[1] GE Qi, LI Zhiqin, WANG Zhaolong, et al. Projection micro stereolithography based 3D printing and its applications[J]. International Journal of Extreme Manufacturing, 2020, 2(2):72-90. [2] GU Zeming, FU Jianzhong, LIN Hui, et al. Development of 3D bioprinting:From printing methods to biomedical applications[J]. Asian Journal of Pharmaceutical Sciences, 2019, 15(5):529-557. [3] ZHANG Keqiang, MENG Qiaoyu, ZHANG Xueqin, et al. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography[J]. Journal of Materials Science & Technology, 2022, 118:144-157. [4] QUAN Haoyuan, ZHANG Ting, XU Hang, et al. Photo-curing 3D printing technique and its challenges[J]. Bioactive Materials, 2020, 5(1):110-115. [5] HUGHES T, SIMON G P, SAITO K. Photocuring of 4-arm coμmarin-functionalised monomers to form highly photoreversible crosslinked epoxy coatings[J]. Polymer Chemistry, 2019, 10(17):2134-2142. [6] ZHANG Peng, WANG Haoxuan, WANG Peng, et al. Lightweight 3D bioprinting with point by point photocuring[J]. Bioactive Materials, 2021, 6(5):1402-1412. [7] LIU Nanbo, YE Xing, YAO Bin, et al. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration[J]. Bioactive Materials, 2021, 6(5):1388-1401. [8] SINGH S, CHOUDHURY D, YU F, et al. In situ bioprinting-Bioprinting from benchside to bedside[J]. Acta Biomaterialia, 2020, 101:14-25. [9] 牛梓源, 陈燕, 张泽群, 等. 特种加工技术在再制造领域中的应用与发展[J]. 金刚石与磨料磨具工程, 2021, 41(5):1-8. NIU Ziyuan, CHEN Yan, ZHANG Zequn, et al. Application and development of special machining technology in remanufacturing field[J]. Diamond &Abrasives Engineering, 2021, 41(5):1-8. [10] Akter F, Araf Y, Naser I B, et al. Prospect of 3D bioprinting over cardiac cell therapy and conventional tissue engineering in the treatment of COVID-19 patients with myocardial injury[J]. Regenerative Therapy, 2021, 18:447-456. [11] ZHANG Cheng, LUO Zhongqiang, LIU Chengbo, et al. Dimensional retention of photocured ceramic units during 3D printing and sintering processes[J]. Ceramics International, 2021, 47(8):11097-11108. [12] HE Chong, CAO Yueqi, MA Cong, et al. Digital light processing of complex-shaped 3D-zircon (ZrSiO4) ceramic components from a photocurable polysiloxane/ZrO2 slurry[J]. Ceramics International, 2021, 47(23):32905-32914. [13] AL-DULIMI Z, WALLIS M, TAN D, et al. 3D printing technology as innovative solutions for biomedical applications[J]. Drug Discovery Today, 2021, 26(2):360-383. [14] SOCHOL R, SWEET E, GLICK C, et al. 3D printed microfluidics and microelectronics[J]. Microelectronic Engineering, 2017, 189(5):52-68. [15] CHEN Zhangwei, LIU Chengbo, LI Junjie, et al. Mechanical properties and microstructures of 3D printed bulk cordierite parts[J]. Ceramics International, 2019, 45(15):19257-19267. [16] 叶淑源, 周习远, 苑景坤, 等. 高速连续光固化3D打印工艺与树脂打印件性能研究[J]. 机械工程学报, 2021, 57(15):255-263. YE Shuyuan, ZHOU Xiyuan, YUAN Jingkun, et al. Study on high-speed continuous photopolymerization 3D printing process and properties of printed resin parts[J]. Journal of Mechanical Engineering, 2021, 57(15):255-263. [17] MENG Xiaoyan, YANG Wenxin, DENG Xin. Research on 3D printing process and properties of diamond-resin composites based on digital light processing[J]. Diamond and Related Materials, 2021, 120:108715. [18] 车江宁, 杨旭, 郭小锋, 等. 基于DLP成型的碳纤维增强光敏树脂3D打印工艺及性能[J]. 塑料工业, 2020, 48(11):71-74, 83. CHE Jiangning, YANG Xu, GUO Xiaofeng, et al. Processing and properties of carbon fiber reinforced photosensitive resin for 3D printing based on DLP molding[J]. China Plastics Industry, 2020, 48(11):71-74, 83. [19] 杨建明, 肖志文, 王永宽, 等. DLP光固化3D打印精密铸造陶瓷型壳的研究[J]. 制造技术与机床, 2021(9):49-53, 57. YANG Jianming, XIAO Zhiwen, WANG Yongkuan, et al. Study on fabrication of precise casting ceramic shell by DLP light curing 3D printing[J]. Design and Research, 2021(9):49-53, 57. [20] LEE Y, TAN W, AN J, et al. The potential to enhance membrane module design with 3D printing technology[J]. Journal of Membrane Science, 2016, 499:480-490. [21] KANG Xiaoqing, LI Xiaogang, LI Yuexuan, et al. Continuous 3D printing by controlling the curing degree of hybrid UV curing resin polymer[J]. Polymer, 2021, 237, 124284. [22] TUGHES T, SLIMON G, SAITO K. Photocuring of 4-arm coumarin-functionalised monomers to form highly photoreversible crosslinked epoxy coatings[J]. Polymer Chemistry, 2019, 10(17):2134-2142. [23] 李全城, 沈剑云, 黄国钦. 微粉金刚石钎焊砂轮磨削氧化铝陶瓷的磨削力和表面粗糙度特征[J]. 金刚石与磨料磨具工程, 2021, 41(5):59-64. LI Quancheng, SHEN Jianyun, HUANG Guoqin. Grinding force and surface roughness of alμmina ceramics ground by brazed micro powder diamond wheel[J]. Diamond &Abrasives Engineering, 2021, 41(5):59-64. [24] 张家有, 宋万万, 白玉珍, 等. 基于逐步回归分析法的表面粗糙度预测[J]. 金刚石与磨料磨具工程, 2021, 41(6):63-67. ZHANG Jiayou, SONG Wanwan, BAI Yuzhen, et al. Surface roughness prediction based on stepwise regression analysis[J]. Diamond &Abrasives Engineering, 2021, 41(6):63-67. [25] MOHAMED M I, AGGAG G A. Uncertainty evaluation of shore hardness testers[J]. Measurement, 2003, 33(3):251-257. [26] 邱陆一, 王秋燕, 白硕玮, 等. 金刚石薄圆锯片基体的磨削工艺参数优化[J]. 金刚石与磨料磨具工程, 2021, 41(5):84-88. QIU Luyi, WANG Qiuyan, BAI Shuowei, et al. Optimization of grinding process parameters of diamond thin circular saw blade substrate[J]. Diamond &Abrasives Engineering, 2021, 41(5):84-88. |