• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (16): 190-199.doi: 10.3901/JME.2024.16.190

• 材料科学与工程 • 上一篇    下一篇

扫码分享

铝锂合金疲劳性能及预测研究-基于试验和“浅层”+“深度”混合神经网络方法

赵德望1, 姜超1, 赵延广2, 杨文平3, 樊俊铃4   

  1. 1. 安徽理工大学机电工程学院 淮南 232000;
    2. 大连理工大学工程力学系 大连 116024;
    3. 哈尔滨工程大学航天与建筑工程学院 哈尔滨 150001;
    4. 中国飞机强度研究所强度与结构完整性全国重点实验室 西安 710065
  • 收稿日期:2023-11-07 修回日期:2024-04-15 出版日期:2024-08-20 发布日期:2024-10-21
  • 作者简介:赵德望,男,1986年出生,博士,副教授,硕士研究生导师。主要研究方向为成形制造、制造工艺力学。E-mail:dewangzhao@qq.com
    赵延广(通信作者),男,1981年出生,博士,高级工程师。主要研究方向为疲劳、断裂及损伤容限性能测试与分析。E-mail:ygzhao81@dlut.edu.cn
  • 基金资助:
    安徽省自然科学基金(2308085ME166)、安徽省高校科学研究重点(KJ2021A0417)、航空科学基金(20200009023004)和中国博士后科学基金面上(2020M680947)资助项目。

Fatigue Performance Prediction Study of Al-Li Alloy-based on Experimental and “Shallow” + “Deep” Hybrid Neural Network Methods

ZHAO Dewang1, JIANG Chao1, ZHAO Yanguang2, YANG Wenping3, FAN Junling4   

  1. 1. School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232000;
    2. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024;
    3. Department of Aerospace and Architectural Engineering, Harbin Engineering University, Harbin 150001;
    4. National Key Laboratory of Strength and Structural Integrity, Aircraft Strength Research Institute, Xi'an 710065
  • Received:2023-11-07 Revised:2024-04-15 Online:2024-08-20 Published:2024-10-21

摘要: 铝锂合金以其优异的力学性能在航空航天领域有着愈发重要的应用,是目前发展最为迅速的轻量化材料之一。疲劳与断裂是引起航空航天结构件失效的主要原因之一,且疲劳破坏具有很强的不确定性和突发性,因此针对铝锂合金疲劳性能评估及预测成为研究热点。开展考虑取样方向、缺口等因素的2A97铝锂合金疲劳试验,获得8组完整S-N曲线,分析相关因素对铝锂合金疲劳性能的影响;提出一种基于浅层网络+深度学习的混合神经网络模型,首先利用浅层算法对低周疲劳试验数据进行训练,实现了数据衍生,进而通过深度学习精准预测出不同工况下的铝锂合金疲劳极限。该方法为快速精确评估材料疲劳性能研究提供新的解决思路。

关键词: 铝锂合金, 疲劳性能, 浅层网络, 深度学习

Abstract: With its excellent mechanical properties, aluminum-lithium alloy has increasingly important in aerospace field and is one of the most rapidly developing lightweight materials. Fatigue and fracture are one of the main causes of failure of aerospace structural components, and fatigue damage is highly uncertain and sudden, so its fatigue performance evaluation and prediction has become a hot research topic. The fatigue experiments of 2A97 aluminum-lithium alloy considering the sampling direction, notch, etc. are carried out to obtain eight sets of complete S-N curves and the influence of relevant factors on the fatigue performance of aluminum-lithium alloy are analyzed. A hybrid neural network model based on shallow network and deep learning is innovatively proposed. The shallow algorithm is used to train the low cycle fatigue experimental data to realize data derivation at first, and then accurately predict the fatigue limit of aluminum-lithium alloy under different working conditions by deep learning. This method provides a new way for the research of fast and accurate evaluation of fatigue properties of materials.

Key words: aluminum-lithium alloy, fatigue performance, shallow networks, deep learning

中图分类号: