[1] 李方义,李振,王黎明,等. 内燃机增材再制造修复技术综述[J]. 中国机械工程,2019,30(9):1119-1127,1133. LI Fangyi,LI Zhen,WANG Liming,et al. Review on ICE remanufacture with additive repair technology[J]. China Mechanical Engineering,2019,30(9):1119-1127,1133. [2] 龚群甫,安小慧. 增材制造修复技术在飞机大修中的应用[J]. 民用飞机设计与研究,2020(3):49-53. GONG Qunfu,AN Xaiohui. Application of additive manufacturing repair technology in aircraft overhaul[J]. Civil Aircraft Design and Research,2020(3):49-53. [3] ONUIKE B,BANDYOPADHYAY A. Additive manufacturing in repair:Influence of processing parameters on properties of Inconel 718[J]. Materials Letters,2019,252:256-259. [4] 徐滨士. 再制造工程的现状与前沿[J]. 材料热处理学报,2010,31(1):10-14. XU Binshi. State of the art and future development in remanufacturing engineering[J]. Transactions of Materials and Heat Treatment,2010,31(1):10-14. [5] HUANG S H,LIU P,MOKASDAR A,et al. Additive manufacturing and its societal impact:A literature review[J]. The International Journal of Advanced Manufacturing Technology,2013,67(5):1191-1203. [6] 王晓明,常青,赵阳,等. Al-Si系铝合金电弧增材再制造成形机理及性能评价[J]. 中国表面工程,2019,32(4):133-140. WANG Xiaoming,CHANG Qing,ZHAO Yang,et al. Mechanism and properties evaluation of wire and arc additive remanufacturing formation for AlSi aluminum alloy[J]. China Surface Engineering,2019,32(4):133-140. [7] 郭怡东,马玉娥,李佩谣. 增材制造钛合金微桁架夹芯板低速冲击响应[J]. 航空学报,2021,42(2):376-386. GUO Yidong,MA Yue,LI Peiyao. Low velocity impact response of additively manufactured titanium alloy micro-truss sandwich panels[J]. Acta Aeronautica ET Astronautica Sinica,2021,42(2):376-386. [8] 张安峰,张金智,张晓星,等. 激光增材制造高性能钛合金的组织调控与各向异性研究进展[J]. 精密成形工程,2019,11(4):1-8. ZHANG Anfeng,ZHANG Jinzhi,ZHANG Xiaoxing,et al. Research progress in tissue regulation and anisotropy of high-performance titanium alloy by laser additive manufacturing[J]. Journal of Netshape Forming Engineering,2019,11(4):1-8. [9] ZHENG Y,LIU J,AHMAD R. A cost-driven process planning method for hybrid additive-subtractive remanufacturing[J]. Journal of Manufacturing Systems,2020,55:248-263. [10] 王华明,李安,张凌云,等. 激光熔化沉积快速成形TA15钛合金的力学性能[J]. 航空制造技术,2008(7):26-29. WANG Huaming,LI An,ZHANG Lingyun,et al. Mechanical properties of titanium alloy TA15 fabricated by laser melting deposition manufacturing[J]. Aeronautical Manufacturing Technology,2008(7):26-29. [11] 王华明,张述泉,王向明. 大型钛合金结构件激光直接制造的进展与挑战[J]. 中国激光,2009,36(12):3204-3209. WANG Huaming,ZHANG Shuquan,WANG Xiangming. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese Journal of Lasers,2009,36(12):3204-3209. [12] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报,2014,35(10):2690-2698. WANG Huaming. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica ET Astronautica Sinica,2014,35(10):2690-2698. [13] ZHANG X,MARTINA F,DING J,et al. Fracture toughness and fatigue crack growth rate properties in wire + arc additive manufactured Ti-6Al-4V[J]. Fatigue & Fracture of Engineering Materials & Structures,2017,40(5):790-803. [14] XIE Y,GAO M,WANG F,et al. Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V[J]. Materials Science and Engineering:A,2018,709:265-269. [15] ZHANG J,ZHANG X,WANG X,et al. Crack path selection at the interface of wrought and wire+arc additive manufactured Ti-6Al-4V[J]. Materials & Design,2016,104:365-375. [16] WANG X,ZHAO Y,WANG L,et al. In-situ SEM investigation and modeling of small crack growth behavior of additively manufactured titanium alloy[J]. International Journal of Fatigue,2021,149:106303. [17] GORDON J V,HADEN C V,NIED H F,et al. Fatigue crack growth anisotropy,texture and residual stress in austenitic steel made by wire and arc additive manufacturing[J]. Materials Science and Engineering:A,2018,724:431-438. [18] DIRISU P,GANGULY S,MEHMANPARAST A,et al. Analysis of fracture toughness properties of wire + arc additive manufactured high strength low alloy structural steel components[J]. Materials Science and Engineering:A,2019,765:138285. [19] KOSEHI T,OHKITA S,YURIOKA N. Thermodynamic study of inclusion formation in low alloy steel weld metals[J]. Science and Technology of Welding and Joining,1997,2(2):65-69. [20] BABU S S. The mechanism of acicular ferrite in weld deposits[J]. Current Opinion in Solid State and Materials Science,2004,8(3):267-278. [21] 李超,朱胜,沈灿铎,等. 堆焊快速成形低碳钢件的组织与微观力学性能[J]. 材料热处理学报,2010,31(4):45-49. LI Chao,ZHU Sheng,SHEN Canduo,et al. Microstructure and micro mechanical properties of mild-steel parts fabricated by surfacing rapid forming[J]. Transactions of Materials and Heat Treatment,2010,31(4):45-49. [22] ZHANG J,WANG X,PADDEA S,et al. Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V:Effects of microstructure and residual stress[J]. Materials & Design,2016,90:551-561. [23] 高炼玲,余圣甫,禹润缜,等. 5356铝合金过渡端框电弧增材制造及组织与性能[J]. 机械工程学报,2020,56(8):28-36. GAO Lianling,YU Shengfu,YU Runzhen,et al. Study on arc additive manufacturing process and properties of 5356 aluminum alloy rocket booster module transition end frame[J]. Journal of Mechanical Engineering,2020,56(8):28-36. [24] WU W F,NI C C. Tatistical aspects of some fatigue crack growth data[J]. Engineering Fracture Mechanics,2007,74(18):2952-2963. [25] GUAN X,JHA R,LIU Y. Probabilistic fatigue damage prognosis using maximum entropy approach[J]. Journal of Intelligent Manufacturing,2012,23(2):163-171. |