[1] KAWAI T, EBIHARA K, TAKEUCHI Y. Improvement of Machining accuracy of 5-Axis control ultraprecision machining by means of laminarization and mirror surface finishing[J]. CIRP Annals, 2005, 54(1):329-332. [2] CHEN Xiaolei, QU Ningsong, HOU Zhibao, et al. Friction reduction of chrome-coated surface with micro-dimple arrays generated by electrochemical micromachining[J]. Journal of Materials Engineering and Performance, 2017, 26(2):667-675. [3] WANG Ke, LIU Daxin, LIU Zhenyu, et al. An assembly precision analysis method based on a general part digital twin model[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68:102089. [4] BAKSHI V. EUV lithography, Second Edition[M]. Washington:SPIE Press, 2018:273-279. [5] 段宝岩, 电子装备机电耦合研究的现状与发展[J]. 中国科学:信息科学, 2015, 45(3):299-312. DUAN Baoyan, Review of electromechanical coupling of electronic equipment[J]. Science China Information Sciences, 2015, 45(3):299-312. [6] GIBSON I, ROSEN D W, STUCKER B, et al. Additive manufacturing technologies[M]. Cham, Switzerland:Springer, 2021. [7] SHAMOTO E, MORIWAKI T. Study on elliptical vibration cutting[J]. CIRP Annals, 1994, 43(1):35-38. [8] KURNIAWAN R, KISWANTO G, KO T J. Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing[J]. International Journal of Machine Tools and Manufacture, 2016, 106: 127-140. [9] JEE H, HWANG H, HAN J, et al. Pattering of self-assembled pentacene nanolayers by extreme ultraviolet induced three dimensional polymerization[J]. ACS Nano, 2010, 4(9):4997-5002. [10] TSENG L, KARADAN P, KAZAZIS D, et al. Resistless EUV lithography:Photon-induced oxide patterning on silicon[J]. Science Advances, 2023, 9(16):eadf5997. [11] MAOZ R, BERSON J, BURSHTAIN D, et al. Interfacial electron beam lithography:Chemical monolayer nanopatterning via electron-beam-induced interfacial solid-phase oxidation [J]. ACS Nano, 2018, 12(10):9680-9692. [12] HONG Yu, ZHAO Ding, WANG Jiyong, et al. Solvent-free nanofabrication based on ice-assisted electron-beam lithography[J]. Nano Letters, 2020, 20(12):8841-8846. [13] 宋凤麒, 戴庆. 原子制造:物质科学的未来技术[J]. 物理, 2023, 52(6):371-380. SONG Fengqi, DAI Qing. Atom manufacturing:A future technique of physical sciences[J]. Physics, 2023, 52(6):371-380. [14] DORSEY K J, PEARSON T G, ESPOSITO E, et al. Atomic layer deposition for membranes, metamaterials, and mechanisms[J]. Advanced Materials, 2019, 31(29):1901944 [15] ELLIS P R, BROWN C M, BISHOP P T, et al. The cluster beam route to model catalysts and beyond[J]. Faraday Discussions, 2016, 188:39-56. [16] EIGLER D M, SCHWEIZER E K. Positioning single atoms with a scanning tunnelling microscope[J]. Nature, 1990, 344(6266):524-526. [17] DYCK O, ZIATDINOV M, LINGERFELT D B, et al. Atom-by-atom fabrication with electron beams[J]. Nature Reviews Materials, 2019, 4(7):497-507. [18] RIVNAY J, MANNSFELD S C B, MILLER C E, et al. Quantitative determination of organic semiconductor microstructure from the molecular to device scale[J]. Chemical Reviews, 2012, 112(10):5488-5519. [19] OH J, LEE H R, UMRAO S, et al. Self-aligned and hierarchically porous graphene-polyurethane foams for acoustic wave absorption[J]. Carbon, 2019, 147:510-518. [20] TROVALUSCI P, De BELLIS M L, MASIANI R. A multiscale description of particle composites:From lattice microstructures to micropolar continua[J]. Composites Part B:Engineering, 2017, 128:164-173. [21] RODRIGUES A M, BARDELLA F, ZUFFO M K, et al. Integrated approach for geometric modeling and interactive visual analysis of grain structures[J]. Computer-Aided Design, 2018, 97:1-14. [22] ZHANG Junqi, EISENTRAGER J, DUCZEK S, et al. Discrete modeling of fiber reinforced composites using the scaled boundary finite element method[J]. Composite Structures, 2020, 235:111744. [23] WANG Liang, NYGREN G, KARKKAINEN R L, et al. A multiscale approach for virtual testing of highly aligned short carbo fiber composites[J]. Composite Structures, 2019, 230:111462. [24] 朱秉铎. 基于NURBS的复合材料构件多尺度设计与制造一体化技术研究[D]. 哈尔滨:哈尔滨工业大学, 2019. ZHU Binduo. Research on multi-scale design and manufacturing integration technology of composite members based on NURBS[D]. Harbin:Harbin Institute of Technology, 2019. [25] 郝宝坤. 基于NURBS的复合材料构件多尺度建模技术研究[D]. 哈尔滨:哈尔滨工业大学, 2018. HAO Baokun. Research on multi-scale modeling of fibre reinforced composite components based on NURBS[D]. Harbin:Harbin Institute of Technology, 2018. [26] RODA-CASANOVA V, SANCHEZ-MARIN F. A 2D finite element based approach to predict the temperature field in polymer spur gear transmission[J]. Mechanism and Machine Theory, 2019, 133:195-210. [27] ZHANG Boyu, LIU Huaiju, BAI Houyi, et al. Ratchetting–multiaxial fatigue damage analysis in gear rolling contact considering tooth surface roughness[J]. Wear, 2019, 428:137-146. [28] 张博宇. 考虑表面微观形貌的齿轮接触疲劳-磨损耦合研究[D]. 重庆:重庆大学, 2020. ZHANG Boyu. Study on gear contact fatigue-wear coupling mechanism with surface micro topography[D]. Chongqing:Chongqing University, 2020. [29] 姚庆睿. 纤维增强复合材料结构件多尺度几何建模技术研究[D]. 哈尔滨:哈尔滨工业大学, 2016. YAO Qinrui. Research on multi-scale geometric modeling of fibre reinforced composite structure[D]. Harbin:Harbin Institute of Technology, 2016. [30] 朱庚尚. 盾构滚刀再制造疲劳剩余寿命评估研究[D]. 徐州:中国矿业大学, 2021. ZHU Gengshang. Study on the Assessment of the remaining fatique life of shield hob[D]. Xuzhou:Chinese University of Mining and Technology, 2021. [31] LU Zehua, LIU Huaiju, ZHANG Renhua, et al. The simulation and experiment research on contact fatigue performance of acetal gears[J]. Mechanics of Materials, 2021, 154(1):103719. [32] ZHOU Hao, WEI Peitang, ZHU Caichao, et al. Roles of microstructure, inclusion, and surface roughness on rolling contact fatigue of a wind turbine gear [J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(7):1368-1383. [33] LIU Rui, CHEN Xiong, ZHOU Changsheng, et al.A couple approach for a conjugate heat transfer investigation of the shape—change effects in a composite nozzle[J]. Numerical Heat Transfer, Part A:Applications, 2015, 68(11):1280-1305. [34] SIDDIQUE S H, HAZELL P J, WANG H, et al. Lessons from nature:3D printed bioinspired porous structures for impact energy absorption - a review[J], Additive Manufacturing, 2022, 58:103051. [35] WU Jun, SIGMUND O, GROEN J P. Topology optimization of multi-scale structures:A review[J]. Structural and Multidisciplinary Optimization, 2021, 63:1455-80. [36] RAJAGOPALAN S, ROBB R A. Schwarz meets Schwann:Design and fabrication of biomorphic and durataxic tissue engineering scaffolds[J]. Medical image analysis, 2006, 10(5):693-712. [37] YOO D J. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds[J]. Medical Engineering & Physics, 2012, 34(6):762-776. [38] ZHANG Fan, TENG Qizhi, CHEN Honggang, et al. Slice-to-voxel stochastic reconstruction on porous media with hybrid dee generative model[J]. Computational Material Science, 2021, 186:11018. [39] XU Chao, PAN Lili, LI Ming, et al. Performance oriented design of semiregular anisotropic porous structures[C]. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2018, Quebec City. [40] ZHU Yichao, LI Shaoshuai, DU Zongliang, et al. A novel asymptotic-analysis-based homogenisation approach towards fast design of infill graded microstructure[J]. Journal of the Mechanics and Physics of Solids, 2019, 124:612-633. [41] CHEN Lianxiong, LIU Hui, CHU Xihua, et al. Functionally graded cellular structure design using the subdomain level set method with local volume constraints[J]. Computer Modeling in Engineering, 2021, 128(3):1197-1218. [42] HU Chuanfeng, LIN Hongwei. Heterogeneous porous scaffold generation using trivariate Bspline solids and triply periodic minimal surfaces[J]. Graphical Models, 2021, 115(3):101105. [43] WANG Chuang, GU Xiaojun, ZHU Jihong, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2020, 61(4):869-894. [44] MA Jianwei, CAO Xingkun, HAN Dongxu, et al. Processing strategy for symmetrical ablation profile in pulsed laser patterning of high-performance broadband spiral antennas [J]. Optics & Laser Technology, 2021, 142(9):107211. [45] 韩东旭. 钛合金叶片表面减阻微结构连续激光加工技术研究[D]. 大连:大连理工大学, 2022. HAN Dongxu. Research on continuous-wave laser processing of microstructure for drag reduction on Titanium alloy blade surface[D]. Dalian:Dalian University of Technology, 2022. [46] SHI Xiaoquan, SUN Yazhou, LI Peixun, et al. Research on scattering characteristics of ultral-precision turned aluminum alloy mirror surface[C]// 7th International Conference on Nanomanufacturing, 2022, Xi’An:SIST296, 33-46. [47] 魏盼, 张丞, 宋云, 等, 叶片微织构数控加工无干涉刀轴生成方法研究[J]. 航空制造技术, 2019, 62(22):88-94. WEI Pan, ZHANG Chen, SONG Yun, et al. Research on generation method of collision-free tool orientation for numerical control machining of blade micro-texture[J]. Aeronautical Manufacturing Technology, 2019, 62(22):88-94. [48] SONG Jianfeng, SONG Younian, WANG Wenwu, et al. Prediction and control on the surface roughness metal powder using selective laser melting[J]. Chinese Journal of Lasers, 2022, 49(2):0202008. [49] 余逸. 面向增材制造的仿生高韧性微结构设计与应用研究[D]. 南京:南京航空航天大学, 2021. YU Yi. Research on design and application of biomimetic microstructure with high toughness for additive manufacturing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2021. [50] 曲睿智, 黄良沛, 肖冬明.基于数值模拟的选择性激光熔化过程中熔池演变与金属飞溅特性分析[J].航空学报, 2022, 43(4):525240. QU Ruizhi, HUANG Liangpei, XIAO Dongming. Numerical simulation of melt pool evolution and metal spattering characterization during selective laser melting process[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4):525240. [51] YANG Benyi, LIU Zhenyu, DUAN Guifang, et al. Mask2Defect:A prior knowledge-based data augmentation method for metal surface defect inspection[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10):6743-6755. [52] GAN Yong, YU Jianghao, WEN Yongsen. Research on error and compensation of volume measurement system for nondestructive testing[C]//2020 Internet of Things, Artificial Intelligence and Machine Automation (loTAIMA), HangZhou, China 2020. [53] XING Junjie, JIA Minping. A convolutional neural network-based method for workpiece surface defect detection[J]. Measurement, 2021, 176:109185. [54] 安倩楠, 基于加工表面显微图像的卷积神经网络粗糙度识别技术研究[D]. 西安:西安理工大学, 2019. AN Qiannan, Research on roughness recognition technology of convolutional neural network based on microscopic image of machining surface[D]. Xi’an:Xi’an University of Technology, 2019. [55] QIN Zijun, LI Weifu, WANG Zi, et al. High-throughput characterization methods for Ni-based superalloys and phase prediction via deep learning[J]. Journal of Materials Research and Technology, 2022, 21:1984-1997. [56] YANG Peng, DONG Chaoyi, ZHAO Xiaoyi, et al. Wind turbine blade surface damage recognition based on an improved depth residual classification algorithm[C]. SUSA 2020. [57] CHEN Dongkangkang, ZHOU Yufeng, WANG Wei, et al. Ultrasonic signal classification and porosity testing for CFRP materials vial artificial neural network[J]. Materials Today Communications, 2021, 30(3-4):103021. [58] GU Dongdong, SHI Xinyu, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545):eabg1487. [59] QIU Chan, LIU Zhenyu, BU Wanghui, et al. Hybrid dimension based modeling of part surface topography and identification of its characteristic parameters[J]. Applied Surface Science, 2012, 258(18):7082-7093. [60] QIU Chan, LIU Zhenyu, PENG Xiang, et al. Realistic geometry based feature modeling of complex part and its application in assembly quality analysis[J]. ASME Journal of Computing and Information Science in Engineering, 2015, 15(4):1-12. [61] LIU Zhenyu, ZHANG Nan, QIU Chan, et al. A discrete fireworks optimization algorithm to optimize multi-matching selective assembly problem with non-normal dimensional distribution[J]. Assembly Automation, 2019, 39(2):323-344. [62] QIU Chan, LIU Zhenyu, PENG Xiang, et al. A non-ideal geometry based prediction approach of fitting performance and leakage characteristic of precision couplings[J]. IEEE Access, 2018, 6:58204-58212. [63] LIU Yuan, ZHENG Guolei, LETOV N, et al. A survey of modeling and optimization methods for multi-scale heterogeneous lattice structures[J]. Journal of Mechanical Design, 2021, 143(4):040803. [64] LI Ming, HU Jingqiao. Analysis of heterogeneous structures of non-separated scales using curved bridge nodes[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 392:114582. [65] YANG Xingtong, LI Ming. Free isotropic material optimization via second order cone programming[J], Computer-Aided Design, 2019, 115:52-63. [66] HU Jingqiao, LI Ming, YANG Xingtong, et al. Cellular structure design based on free material optimization under connectivity control[J]. Computer-Aided Design, 2020, 127. [67] LI Ming, HU Jingqiao, CHEN Wei, et al. Explicit topology optimization of conforming Voronoi foams[J/OL]. arXiv:2308.04001, 2023. [68] LI Ming, ZHU Liangchao, LI Jingzhi, et al. Design optimization of interconnected porous structures using ETPMS[J]. Journal of Computational Physics, 2021, 425. |