[1] MITCHELL A,LAFONT U,HOLYNSKA M,et al. Additive manufacturing-A review of 4D printing and future applications[J]. Additive Manufacturing,2018,24:606-626. [2] 赵亦希,李永兵,潘尔顺. 聚焦优质制造,助推质量强国——解读《优质制造》[J]. 中国机械工程,2018,29(19):2389-2393. ZHAO Yixi,LI Yongbing,PAN Ershun. Focus on quality manufacturing,booster quality power:Interpretation of quality manufacturing[J]. China Mechanical Engineering,2018,29(19):2389-2393. [3] 李涤尘,贺健康,田小永,等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报,2013,49(6):129-135. LI Dichen,HE Jiankang,TIAN Xiaoyong,et al. Additive manufacturing:Integrated fabrication of microstructures[J]. Journal of Mechanical Engineering,2013,49(6):129-135. [4] 杨佳,郭洪钢,谭建波. 选择性激光熔化技术研究现状及发展趋势[J]. 河北工业科技,2017,34(4):300-305. YANG Jia,GUO Honggang,TAN Jianbo. Status and development trend of selective laser melting technology[J]. Hebei Journal of Industrial Science and Technology,2017,34(4):300-305. [5] ZHANG Shasha,ZHU Haihong,ZHANG Luo,et al. Microstructure and properties in QCr0.8 alloy produced by selective laser melting with different heat treatment[J]. Journal of Alloys and Compounds,2018,800:286-293. [6] WILLIAMS S W,MARTINA F,ADDISON A C,et al. Wire arc additive manufacturing[J]. Materials Science and Technology,2016,32(7):641-647. [7] XIONG Jun,LI Rong,LEI Yangyang,et al. Heat propagation of circular thin-walled parts fabricated in additive manufacturing using gas metal arc welding[J]. Journal of Materials Processing Technology,2017,251:12-19. [8] QI Zewu,CONG Baoqiang,QI Bojin,et al. Micro-structure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys[J]. Journal of Materials Processing Technology,2018,255:347-353. [9] WANG Fude,WILLIAMS S,COLEGROVE P,et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A,2013,44(2):968-977. [10] 罗怡,朱亮,韩静韬,等. 电弧填丝增材制造过程熔滴射滴过渡特征及其对熔滴沉积成形的影响[J]. 机械工程学报,2019,55(3):219-225. LUO Yi,ZHU Liang,HAN Jingtao,et al. Analysis on the characteristics of metal droplet transferred by projected transfer mode in wire+arc additive manufacturing process[J]. Journal of Mechanical Engineering,2019,55(3):219-225. [11] WANG Jun,PAN Zengxi,YANG Guangsai,et al. Location dependence of microstructure,phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing[J]. Materials Science and Engineering:A,2019,749:218-222. [12] ZENG Zhi,YANG Mao,OLIVEIRA J P,et al. Laser welding of NiTi shape memory alloy wires and tubes for multi-functional design applications[J]. Smart Materials and Structures,2016,25(8):1-10. [13] 任家烈,吴爱萍. 先进材料的连接[M]. 北京:机械工业出版社,2000. REN Jialie,WU Aiping. The joint of advanced materials[M]. Beijing:China Machine Press,2000. [14] 高福洋,张毅,孙建刚,等. 钛合金多层多道电弧增材制造成形特性研究[J]. 焊接技术,2019,48:23-27. GAO Fuyang,ZHANG Yi,SUN Jiangang,et al. The formation characteristics of titanium alloy multi-layer multi-channel arc additive[J]. Welding Technology,2019,48:23-27. [15] QI Zewu,QI Bojin,CONG Baoqiang,et al. Micro-structure and mechanical properties of wire+arc additively manufactured 2024 aluminum alloy components:As-deposited and post heat-treated[J]. Journal of Manufacturing Processes,2019,4:27-36. [16] BAGHERIA A,MAHTABIA M J,SHAMSAEIB N. Fatigue behavior and cyclic deformation of additive manufactured NiTi[J]. Journal of Materials Processing Technology,2018,252:440-453. [17] OTSUKA K,REN X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Matererials Science,2005,50(5):511-678. [18] GU Dongdong,MA Chenglong. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites[J]. Applied Surface Science,2018,441:862-870. [19] OLIVEIRA J P,BARBOSA D,BRAZ FERNANDES F M,et al. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates:Functional behavior[J]. Smart Materials and Structures,2016,25(3):1-7. [20] KHAN M I,PEQUGNAT A,ZHOU Y N. Multiple memory shape memory alloys[J]. Advanced Engineering Materials,2013,15:386-393. [21] 阎小军,杨大智,刘黎明. 超弹性NiTi合金丝激光点焊接头的组织和性能[J]. 中国有色金属学报,2005,15:19-23. YAN Xiaojun,YANG Dazhi,LIU Liming. Micro-structures and properties of laser spot-welded joint of superelastic NiTi alloy wire[J]. The Chinese Journal of Nonferrous Metals,2005,15:19-23. [22] ZHENG Yufeng,JIANG Fei,LI Li,et al. Effect of ageing treatment on the transformation behavior of Ti-50.9at.% Ni alloy[J]. Acta Materialia,2008,56:736-745. [23] GIL F J,MANERO J M,PLANELL J A,et al. Effect of grain size on the martensitic transformation in NiTi alloy[J]. Journal of Materials Science,1995,30(10):2526-2530. [24] OLIVEIRA J P,BRAZ FERNANDES F M,MIRANDA R M,et al. Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi[J]. Materials Characterization,2016,119:148-151. [25] 李启全,祁珊. NiTi形状记忆合金超弹性的研究进展[J].国外金属热处理,2003(4):5-9. LI Qiquan,QI Shan. Research progress on superelasticity of NiTi shape memory alloy[J]. Heat Treatment of Metals Abroad,2003(4):5-9. [26] SATOH Gen,YAO L Y,HUANG Xu,et al. Characterization and prediction of texture in laser annealed NiTi shape memory thin films[J]. Journal of Manufacturing Science and Engineering,2010,134(5):1-10. [27] ELAHINIA M,MOGHADDAM N S,ANDANI M T,et al. Fabrication of NiTi through additive manufacturing:A review[J]. Progress in Materials Science,2016,83:630-663. [28] ZENG Zhi,OLIVEIRA J P,YANG Mao,et al. Functional fatigue behavior of NiTi-Cu dissimilar laser welds[J]. Materials & Design,2017,114(15):282-287. [29] OLIVEIRA J P,BRAZ F F M,SCHELL N,et al. Martensite stabilization during superelastic cycling of laser welded NiTi plates[J]. Materials Letters,2016,171:273-276. [30] JIANG Fengchun,KENNETH S V. Fracture of Nitinol under quasistatic and dynamic loading[J]. Metallurgical and Materials Transactions A,2007,38:2907-2915. |