• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (22): 63-77.doi: 10.3901/JME.2018.22.063

• 材料科学与工程 • 上一篇    下一篇


刘净川1, 姜风春2, 王立权1, 张蒙祺3, 运飞宏1   

  1. 1. 哈尔滨工程大学海洋智能机械研究所 哈尔滨 150001;
    2. 哈尔滨工程大学超轻材料与表面技术教育部重点实验室 哈尔滨 150001;
    3. 西北工业大学机电工程学院 西安 710072
  • 收稿日期:2018-05-17 修回日期:2018-10-12 出版日期:2018-11-20 发布日期:2018-11-20
  • 通讯作者: 刘净川(通信作者),男,1989年出生,博士研究生。主要研究方向为固体力学。E-mail:liujingchuan@hrbeu.edu.cn
  • 基金资助:

NEIM Based Modeling and Simulation Study of Innovative Ti-(SiCf/Al3Ti) Laminated Composites at the Early Stage of Penetration Process

LIU Jingchuan1, JIANG Fengchun2, WANG Liquan1, ZHANG Mengqi3, YUN Feihong1   

  1. 1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001;
    2. Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001;
    3. College of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072
  • Received:2018-05-17 Revised:2018-10-12 Online:2018-11-20 Published:2018-11-20

摘要: 一种由连续SiC陶瓷纤维强化(CCFR)的新型金属间化合物基层状(MIL)复合材料Ti-(SiCf/Al3Ti)研制成功,其作为装甲防护材料在被侵彻过程中的微观变形机制、强化及失效机理有待研究。首先采用电镜扫描法(SEM)表征该材料的微观结构和界面特征,而后提出一种新的建模方法,基于高效的等效夹杂数值算法(NEIM),对刚性球侵彻靶体复合材料的早期接触过程进行建模,研究准静态加载下Ti-(SiCf/Al3Ti)复合材料的小变形弹塑性接触力学行为,并通过压痕试验验证该模型的精确性。结果表明,在球-面加载模式下,SiC纤维对CCFR-MIL复合材料的强度提高显著,而对延展性的强化却不如面-面加载模式下明显。此外,球-面加载模式下的最大塑性应变集中(MPSC)区出现在Al3Ti层最接近中心SiC纤维上边界的位置,并随载荷的增大沿深度方向延伸,该区域是裂纹萌生并扩展的高发区。当相邻SiC纤维的中心距为四倍纤维直径,且Ti层体积分数为40%时,CCFR-MIL复合材料的综合力学性能最佳。更高效数值方法的运用,节约了计算成本,清晰透彻地揭示了新型CCFR-MIL复合材料在被侵彻过程中的微观变形机制、强化及失效机理,并使参数化研究更为全面,便于材料的微观结构优化。

关键词: Ti/Al3Ti金属间化合物基层状复合材料, 弹塑性力学性能, 等效夹杂数值算法, 连续SiC纤维, 微观结构表征

Abstract: A novel silicon carbide(SiC) continuous ceramic fiber-reinforced(CCFR) Ti/Al3Ti metal-intermetallic-laminate(MIL) composite is fabricated, the microcosmic deformation, strengthening and failure mechanisms of which as an armor material during penetration process have not been investigated. Firstly, the microstructure and interface features of the material are characterized by scanning electron microscopy(SEM). And then, a novel model is built based on the high-efficiency numerical equivalent inclusion method(NEIM) for the contact between laminated composite and rigid ball at the early stage of penetration process, to analyze the small-strain elasto-plastic mechanical behaviors of Ti/Al3Ti MIL with SiC fiber under quasi-static loading. The accuracy of the model is validated by an indentation test. The results indicate that, the compressive strength of CCFR-MIL composites are improved apparently through the introduction of SiC fibers under sphere-plane loading mode, while the SiC reinforcement effect for ductility is not as obvious as that under plane-plane loading mode. In addition, under sphere-plane loading mode, the maximum plastic strain concentration(MPSC) in the Al3Ti layer is closest to the upper boundary of the central SiC fiber, and then extends along depth as the load increases, which are also the locations cracks may initiate and extend from. Moreover, CCFR-MIL composite shows better mechanical properties when the center distance between adjacent SiC fibers is quadruple fiber diameter, and the volume fraction of Ti is 40%.By means of the more efficientnumerical method, the computational costis saved, the microcosmic deformation, strengthening and failure mechanisms of the novel CCFR-MIL composite during penetration process are revealed more clearly and completely. Besides, the parametric studies are more comprehensive, which is beneficial to optimize the microstructure of the composite.

Key words: continuous SiC fiber, elasto-plastic mechanical properties, microstructure characterization, numerical equivalent inclusion method, Ti/Al3Ti metal-intermetallic-laminate composite