[1] KANG H S, JU Y L, CHOI S S, et al. Smart manufacturing:Past research, present findings, and future directions[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2016,3(1):111-128.
[2] LIANG S Y, HECKER R L, LANDERS R G. Machining process monitoring and control:The state-of-the-art[J]. Journal of Manufacturing Science & Engineering, 2004, 126(2):599-610.
[3] ZHANG Jingying, LIANG S Y, YAO Jun, et al. Evolutionary optimization of machining processes[J]. Journal of Intelligent Manufacturing, 2006, 17(2):203-215.
[4] DAVIS J, EDGAR T, PORTER J, et al. Smart manufacturing, manufacturing intelligence and demand-dynamic performance[J]. Computers & Chemical Engineering, 2012, 47(12):145-156.
[5] WANG Lihui,TÖRNGREN M,ONORI M. Current status and advancement of cyber-physical systems in manufacturing[J]. Journal of Manufacturing Systems, 2015, 37:517-527.
[6] WANG Lihui. An overview of function block enabled adaptive process planning for machining[J]. Journal of Manufacturing Systems, 2015, 35:10-25.
[7] WANG Lihui. Machine availability monitoring and machining process planning towards Cloud manufacturing[J]. Cirp Journal of Manufacturing Science & Technology, 2013, 6(4):263-273.
[8] WANG Zhao, JIAO Li, YAN Pei, et al. Research and development of intelligent cutting database cloud platform system[J]. International Journal of Advanced Manufacturing Technology, 2016:1-13.
[9] CAI Ligang, TIAN Yang, LIU Zhifeng, et al. Application of cloud computing to simulation of a heavy-duty machine tool[J]. International Journal of Advanced Manufacturing Technology, 2015, 84(1):291-303.
[10] WU Mingyang, HUO Tingyu, GE Jianghua. Cutting process-based optimization model of machining feature for cloud manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(1):327-334.
[11] WANG Lihui, WANG X V, GAO Liang, et al. A cloud-based approach for WEEE remanufacturing[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1):409-412.
[12] WANG Lihui, KESHAVARZMANESH S, FENG H Y. A function block based approach for increasing adaptability of assembly planning and control[J]. International Journal of Production Research, 2011, 49(16):4903-4924.
[13] WANG Lihui. Planning towards enhanced adaptability in digital manufacturing[J]. International Journal of Computer Integrated Manufacturing, 2011, 24(5):378-390.
[14] TOTIS G, SORTINO M. Development of a modular dynamometer for triaxial cutting force measurement in turning[J]. International Journal of Machine Tools & Manufacture, 2011, 51(1):34-42.
[15] PANZERA T H, SOUZA P R, RUBIO J C C, et al. Development of a three-component dynamometer to measure turning force[J]. International Journal of Advanced Manufacturing Technology, 2012, 62(9-12):913-922.
[16] ZHAO You, ZHAO Yulong, LIANG Songbo, et al. A high performance sensor for triaxial cutting force measurement in turning[J]. Sensors, 2015, 15(4):7969-84.
[17] SHU Shengrong, CHENG Kai, DING Hui, et al. An innovative method to measure the cutting temperature in process by using an internally cooled smart cutting tool[J]. Journal of Manufacturing Science & Engineering, 2013, 135(6):1247-1254.
[18] BASTI A, OBIKAWA T, SHINOZUKA J. Tools with built-in thin film thermocouple sensors for monitoring cutting temperature[J]. International Journal of Machine Tools & Manufacture, 2007, 47(5):793-798.
[19] ATLURU S, HUANG S H, SNYDER J P. A smart machine supervisory system framework[J]. International Journal of Advanced Manufacturing Technology, 2012, 58(5):563-572.
[20] PARK H S, TRAN N H. Development of a smart machining system using self-optimizing control[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(9):1365-1380.
[21] TETI R, JEMIELNIAK K, O'DONNELL G, et al. Advanced monitoring of machining operations[J]. CIRP Annals-Manufacturing Technology, 2010, 59(2):717-739.
[22] 王维,杨建国,姚晓栋,等. 数控机床几何误差与热误差综合建模及其实时补偿[J]. 机械工程学报, 2012, 48(7):165-170. WANG Wei, YANG Jianguo, YAO Xiaodong, et al. Synthesis modeling and real-time compensation of geometric error and thermal error for CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(7):165-170.
[23] ZHU Weidong, WANG Zhigang, YAMAZAKI K. Machine tool component error extraction and error compensation by incorporating statistical analysis[J]. International Journal of Machine Tools & Manufacture, 2010, 50(9):798-806.
[24] TUNC L T, BUDAK E, BILGEN S, et al. Process simulation integrated tool axis selection for 5-axis tool path generation[J]. CIRP Annals-Manufacturing Technology, 2016, 64(1):381-384.
[25] CALAMAZ M, COUPARD D, GIROT F. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools & Manufacture, 2008, 48(3-4):275-288.
[26] ATTANASIO A, CERETTI E, RIZZUTI S, et al. 3D finite element analysis of tool wear in machining[J]. CIRP Annals-Manufacturing Technology, 2008, 57(1):61-64.
[27] ATTANASIO A, UMBRELLO D. Abrasive and diffusive tool wear FEM simulation[J]. International Journal of Material Forming, 2009, 2(1):543-546.
[28] FEITO N, LÓPEZ-PUENTE J, SANTIUSTE C, et al. Numerical prediction of delamination in CFRP drilling[J]. Composite Structures, 2014, 108(1):677-683.
[29] YUE Caixu, ZHONG Zhaonan, YU Mingming, et al. High-speed cutting finite element model parametric modeling based on ABAQUS[J]. Materials Science Forum, 2014, 800-801:353-357.
[30] 岳彩旭. 模具钢硬态切削过程刀具磨损及表面淬火效应研究[D]. 哈尔滨:哈尔滨理工大学, 2012. YUE Caicu. Tool wear and surface quenching mechanism for hard cutting process of die steel[D]. Harbin:Harbin University Of Science And Technology, 2012.
[31] 于明明. 车削过程的参数化建模及优化控制[D]. 哈尔滨:哈尔滨理工大学, 2013. YU Mingming. Parametric modeling on turning process and optimization control[D]. Harbin:Harbin University of Science And Technology, 2013.
[32] DIMLA E. DIMLA S. Sensor signals for tool-wear monitoring in metal cutting operations-a review of methods[J]. International Journal of Machine Tools & Manufacture, 2000, 40(8):1073-1098.
[33] CHEN Xiaoqi, LI Huaizhong. Development of a tool wear observer model for online tool condition monitoring and control in machining nickel-based alloys[J]. International Journal of Advanced Manufacturing Technology, 2009, 45(7):786-800.
[34] SEEMUANG N, MCLEAY T, SLATTER T. Using spindle noise to monitor tool wear in a turning process[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(9):2781-2790.
[35] FU Pan, HOPE A D. Intelligent classification of cutting tool wear states[C]//International Conference on Advances in Neural Networks. Springer-Verlag, 2006:964-969.
[36] WANG Guofeng, CUI Yinhu. On line tool wear monitoring based on auto associative neural network[J]. Journal of Intelligent Manufacturing, 2013, 24(6):1085-1094.
[37] SILVA M B D, WALLBANK J. Cutting temperature:prediction and measurement methods-a review[J]. Journal of Materials Processing Technology, 1999, 88(1-3):195-202.
[38] LONGBOTTOM J M, LANHAM J D. Cutting temperature measurement while machining-a review[J]. Aircraft Engineering & Aerospace Technology, 2013, 77(2):122-130.
[39] LI Linwen, LI Bin, EHMANN K F, et al. A thermo-mechanical model of dry orthogonal cutting and its experimental validation through embedded micro-scale thin film thermocouple arrays in PCBN tooling[J]. International Journal of Machine Tools & Manufacture, 2013, 70(4):70-87.
[40] AYDIN M, KARAKUZU C, UÇAR M, et al. Prediction of surface roughness and cutting zone temperature in dry turning processes of AISI304 stainless steel using ANFIS with PSO learning[J]. International Journal of Advanced Manufacturing Technology, 2013, 67(1):957-967.
[41] KOVAC P,RODIC D,PUCOVSKY V,et al. Multi-output fuzzy inference system for modeling cutting temperature and tool life in face milling[J]. Journal of Mechanical Science & Technology, 2014, 28(10):4247-4256.
[42] SINGH D, RAO P V. A surface roughness prediction model for hard turning process[J]. International Journal of Advanced Manufacturing Technology, 2007, 32(11):1115-1124.
[43] ILHAN ASILTÜRK, AKKUS H. Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method[J]. Measurement, 2011, 44(9):1697-1704.
[44] MIA M, DHAR N R. Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method[J]. International Journal of Advanced Manufacturing Technology, 2016. (on line)
[45] HECKER R L, LIANG S Y. Predictive modeling of surface roughness in grinding[J]. International Journal of Machine Tools & Manufacture, 2003, 43(8):755-761.
[46] GRZENDA M, BUSTILLO A, ZAWISTOWSKI P. A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling[J]. Journal of Intelligent Manufacturing, 2012, 23(5):1733-1743.
[47] HUANG P T B. An intelligent neural-fuzzy model for an in-process surface roughness monitoring system in end milling operations[J]. Journal of Intelligent Manufacturing, 2016, 27(3):689-700.
[48] KHORASANI A M, YAZDI M R S. Development of a dynamic surface roughness monitoring system based on artificial neural networks (ANN) in milling operation[J]. International Journal of Advanced Manufacturing Technology, 2015. (on line)
[49] CHEN Fan, LU Xiaodong, ALTINTAS Y. A novel magnetic actuator design for active damping of machining tools[J]. International Journal of Machine Tools & Manufacture, 2014, 85(7):58-69.
[50] CHEN Fan, HANIFZADEGAN M, ALTINTAS Y, et al. Active damping of boring bar vibration with a magnetic actuator[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6):2783-2794.
[51] CHEN Fan, LIU Guangya. Active damping of machine tool vibrations and cutting force measurement with a magnetic actuator[J]. International Journal of Advanced Manufacturing Technology, 2016. (on line)
[52] LU Xiaodong, CHEN Fan, ALTINTAS Y. Magnetic actuator for active damping of boring bars[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1):369-372.
[53] MEI Deqing, YAO Zhehe, KONG Tianrong, et al. Parameter optimization of time-varying stiffness method for chatter suppression based on magnetorheological fluid-controlled boring bar[J]. International Journal of Advanced Manufacturing Technology, 2009, 46(9):1071-1083.
[54] LIU Lijia, LIU Xianli, LIU Yuanhong. Non-uniform sampling finite-time control for networked control systems via event-driven transmission[J]. Advances in Mechanical Engineering, 2016. (on line)
[55] LIU Lijia, LIU Xianli, MAN Chuntao, et al. Delayed observer-based H ∞, control for networked control systems[J]. Neurocomputing, 2016, 179(C):101-109.
[56] 刘立佳. 变刚度-约束阻尼减振镗杆设计及特性研究[D]. 哈尔滨:哈尔滨理工大学, 2016. LIU Lijia. Design and characteristics research on damping boring bar with variable stiffness and constrained damping[D]. Harbin:Harbin University of Science And Technology, 2016.
[57] BRECHER C, MANOHARAN D, LADRA U, et al. Chatter suppression with an active workpiece holder[J]. Production Engineering, 2010, 4(2-3):239-245.
[58] 李茂月,韩振宇,富宏亚,等. 基于开放式控制器的铣削颤振在线抑制[J]. 机械工程学报, 2012, 48(17):172-182. LI Maoyue, HAN Zhenyu, FU Hongya, et al. Online milling chatter suppression based on open architecture controller[J]. Journal of Mechanical Engineering, 2012, 48(17):172-182.
[59] TSAI N C, CHEN D C, LEE R M. Chatter prevention for milling process by acoustic signal feedback[J]. International Journal of Advanced Manufacturing Technology, 2009, 47(9):1013-1021.
[60] TSAI N C, CHEN D C, LEE R M, et al. Chatter prevention and improved finish of workpiece for a milling process[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2010, 224(4):579-588.
[61] ZUPERL U, CUS F, REIBENSCHUH M. Neural control strategy of constant cutting force system in end milling[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(3):485-493.
[62] ZUPERL U, CUS F, REIBENSCHUH M. Modeling and adaptive force control of milling by using artificial techniques[J]. Journal of Intelligent Manufacturing, 2012, 23(5):1805-1815.
[63] ZUPERL U, CUS F. System for off-line feedrate optimization and neural force control in end milling[J]. International Journal of Adaptive Control & Signal Processing, 2012, 26(2):105-123.
[64] ERKORKMAZ K, LAYEGH S E, LAZOGLU I, et al. Feedrate optimization for free form milling considering constraints from the feed drive system and process mechanics[J]. CIRP Annals-Manufacturing Technology, 2013, 62(1):395-398.
[65] YAO Xifan, ZHANG Yi, LI Bin, et al. Machining force control with intelligent compensation[J]. International Journal of Advanced Manufacturing Technology, 2013, 69(5):1701-1715.
[66] LIU Xianli, DING Yunpeng, YUE Caixu, et al. Off-line feedrate optimization with multiple constraints for corner milling of a cavity[J]. International Journal of Advanced Manufacturing Technology, 2015, 82(9):1899-1907.
[67] 刘献礼,丁云鹏,岳彩旭,等. 基于载荷控制的拐角铣削进给优化[J]. 机械工程学报, 2016, 52(19):189-196. LIU Xianli, DING Yunpeng, YUE Caixu, et al. Feedrate optimization based on load control for corner-milling[J]. Journal of Mechanical Engineering, 2016, 52(19):189-196. |