[1] SUN Chuanzhi,CHEN Danyang,LI Chengtian,et al. A novel constrained optimization-build method for precision assembly of aircraft engine[J]. Assembly Automation,2019,40(6):869-879. [2] 季青松,陈军,范斌,等. 大型飞机自动化装配技术的应用与发展[J]. 航空制造技术,2014(1):75-78. JI Qingsong,CHEN Jun,FAN Bin,et al. Application and development of automatic assembly technology for large aircraft. digital assembly technology for large aircraft[J]. Aeronautical Manufacturing Technology,2014(1):75-78. [3] FAN Wei,ZHENG Lianyu,JI Wei,et al. A Machining accuracy informed adaptive positioning method for finish machining of assembly interfaces of large-scale aircraft components[J]. Robotics and Computer-Integrated Manufacturing,2021,67:102021. [4] GAI Yuhang,ZHANG Jiwen,GUO Jiuming,et al. Construction and uncertainty evaluation of large-scale measurement system of laser trackers in aircraft assembly[J]. Measurement,2020,165:108144. [5] MARTIN O C,MUELANER J E,TOMLINSON D,et al. The metrology enhanced tooling for aerospace (META) framework[C]//Proceedings of the 36th International MATADOR Conference. Springer,London,2010:363-366. [6] 秦兆君,郑联语,张宏博,等. 可重构柔性型架的智能装调与监测系统开发及应用[J]. 航空制造技术,2018,61(17):72-79. QIN Zhaojun,ZHENG Lianyu,ZHANG Hongbo,et al. Development of smart assembly and monitoring system for reconfigurable flexible tooling[J]. Aeronautical Manufacturing Technology,2018,61(17):72-79. [7] QIN Zhaojun,LU Yuqian,ZHANG Hongbo,et al. A reconfigurable jig assistant assembly system based on wearable devices[C]//International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers,2020,84263:V002T07A005. [8] MUELANER J,MARTIN O,MAROPOULOS P. Metrology enhanced tooling for aerospace (meta):Strategies for improved accuracy of jig built structures[R]. SAE Technical Paper Series,2011-10-18. [9] 王巍,高雪松,俞鸿均,等. 基于关键测量特性的飞机装配工装在线检测[J]. 制造业自动化,2016,38(5):107-110. WANG Wei,GAO Xuesong,YU Hongjun,et al. Aircraft assembly tooling on-line detection based on key measurement characteristics[J]. Manufacturing Automation,2016,38(5):107-110. [10] MAROPOULOS P,GUO Y,JAMSHIDI J,et al. Large volume metrology process models:A framework for integrating measurement with assembly planning[J]. CIRP Annals Manufacturing Technology,2008,57(1):477-480. [11] NAMRATHA M R,PRAMAL J,PRAVEEN J,et al. Smart board level machine vision system for online inspection:A review[J]. Ijireeice,2015,3(2):30-32. [12] NEOGI N,MOHANTA D K,DUTTA P K. Review of vision-based steel surface inspection systems[J]. EURASIP Journal on Image and Video Processing,2014,2014(1):1-19. [13] ALDRICH C,MARAIS C,SHEAN B J,et al. Online monitoring and control of froth flotation systems with machine vision:A review[J]. International Journal of Mineral Processing,2010,96(1-4):1-13. [14] Geodetic-Systems. 777 Flap Tool[EB/OL].[2022-03-05]https://www.geodetic.com/applications/aerospace/ [15] DROUOT A,ZHAO Ran,IRVING L,et al. Measurement assisted assembly for high accuracy aerospace manufacturing[J]. IFAC-PapersOnLine,2018,51(11):393-398. [16] JIA Zhenyuan,LIANG Bing,LIU Wei,et al. 3D microdisplacement monitoring of large aircraft assembly with automated in situ calibration[J]. Engineering,https://doi.org/10.1016/j.eng.2021.02.023. [17] LIU Wei,WANG Ting,LIANG Bing,et al. Measurement of three-dimensional information by single eddy current displacement sensor[J]. IEEE Sensors Journal,2019,19(9):3543-3552. [18] LIANG Bing,LIU Wei,LIU Kun,et al. A portable noncontact profile scanning system for aircraft assembly[J]. Engineering,https://doi.org/10.1016/j.eng.2020.09.017. [19] NIHTIANOV S. Measuring in the subnanometer range capacitive and eddy current nanodisplacement sensors[J]. IEEE Industrial Electronics Magazine,2014,8(1):6-15. [20] NABAVI M. R,NIHTIANOV S. N. Design strategies for eddy-current displacement sensor systems:Review and recommendations[J]. IEEE Sensors Journal,2012,12(12):3346-3355. [21] YU Yating,YANG Tuo,DU Pingan. A new eddy current displacement measuring instrument independent of sample electromagnetic properties[J]. NDT & E International,2012,48:16-22. [22] HENSEL S,STRAUSS T,MARINOV M. Eddy current sensor based velocity and distance estimation in rail vehicles[J]. IET Science Measurement & Technology,2015,9(7):875-881. [23] NICOLAS M J,SULLIVAN R W,RICHARDS W L. Large scale applications using fbg sensors:Determination of in-flight loads and shape of a composite aircraft wing[J]. Aerospace,2016,3(3):18. [24] KRESSEL I,DORFMAN B,BOTSEV Y,et al. Flight validation of an embedded structural health monitoring system for an unmanned aerial vehicle[J]. Smart Materials and Structures,2015,24(7):075022. [25] 汪俊亮,张洁. 大数据驱动的晶圆工期预测关键参数识别方法[J]. 机械工程学报,2018,54(23):185-191. WANG Junliang,ZHANG Jie. Big data driven key factor identification for cycle-time forecasting of wafer lots in semiconductor wafer fabrication system[J]. Journal of Mechanical Engineering,2018,54(23):185-191. [26] WANG Junliang,GAO Pengjie,ZHENG Peng,et.al. A fuzzy hierarchical reinforcement learning based scheduling method for semiconductor wafer manufacturing systems[J]. Journal of Manufacturing Systems,2021,61:239-248. [27] XU Chuqiao,WANG Junliang,TAO Jing,et.al. A knowledge augmented image deblurring method with deep learning for in-situ quality detection of yarn production[J]. International Journal of Production Research,2022,61:1-17. [28] WEN Long,LI Xinyu,GAO Liang. A new two-level hierarchical diagnosis network based on convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement,2019,69(2):1-9. [29] DEBROY T,ZHANG W,TURNER J,et al. Building digital twins of 3D printing machines[J]. Scripta Materialia,2017,135:119-124. [30] LIANG Bing,LIU Wei,LIU Kun,et al. A displacement field perception method for component digital twin in aircraft assembly[J]. Sensors,2020,20(18):5161. |