机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 460-474.doi: 10.3901/JME.2023.19.460
• 制造工艺与装备 • 上一篇
杨明辉1,2, 邓犇2, 易家乐2, 彭芳瑜2,3, 潘之千2, 张杭2
收稿日期:
2023-05-18
修回日期:
2023-07-29
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
彭芳瑜(通信作者),男,1972年出生,博士,教授,博士研究生导师。主要研究方向为难加工材料的精密和超精密加工、机器人加工、五轴数控加工机理与装备。E-mail:pengfy@hust.edu.cn
作者简介:
杨明辉,女,1994年出生,博士后。主要研究方向为金属基复合材料精密和超精密加工机理与装备。E-mail:ymh426@whut.edu.cn
基金资助:
YANG Minghui1,2, DENG Ben2, YI Jiale2, PENG Fangyu2,3, PAN Zhiqian2, ZHANG Hang2
Received:
2023-05-18
Revised:
2023-07-29
Online:
2023-10-05
Published:
2023-12-11
摘要: 随着航空航天、生物医疗等领域对高端装备中使用的复合材料零部件的制造需求跨越式提升,金属基复合材料(Metal matrix composites, MMCs)切削加工性能研究成为学术界和工业界持续关注的热点之一。近年来众多学者在MMCs切削过程分析方面已开展大量研究并取得丰富成果,但仍缺乏从MMCs组织和性能角度总结材料去除机理和切削过程建模的研究进展,特别是针对微细切削加工研究的报道较少。本文重点分析不同加工尺度下增强相特征参数对MMCs去除机理的影响,探讨MMCs的微尺度去除机理。此外,还对切削过程建模研究进行了综述,包括本构关系与切削力的解析建模、切屑成形过程有限元仿真模拟和原位观测分析,重点总结了材料多相结构、增强相脱粘与断裂行为以及强化机制和尺度效应等机理在建模中的体现,为微细切削过程建模提供重要指导。最后,对MMCs切削过程研究进行了总结和展望,为解决MMCs微细/精密切削加工难题提供理论和数据支撑。
中图分类号:
杨明辉, 邓犇, 易家乐, 彭芳瑜, 潘之千, 张杭. 金属基复合材料切削去除机理与过程建模研究综述[J]. 机械工程学报, 2023, 59(19): 460-474.
YANG Minghui, DENG Ben, YI Jiale, PENG Fangyu, PAN Zhiqian, ZHANG Hang. Review on Removal Mechanism and Process Modeling in Machining of Metal Matrix Composites[J]. Journal of Mechanical Engineering, 2023, 59(19): 460-474.
[1] SRIVASTAVA A K,DIXIT A R,TIWARI S. A review on the intensification of metal matrix composites and its nonconventional machining[J]. Science & Engineering of Composite Materials,2018,25(2),213-228. [2] KACZMAR J W,PIETRZAK K,WŁOSIŃSKI W. The production and application of metal matrix composite materials[J]. Journal of Materials Processing Technology,2000,106(1):58-67. [3] PRAMANIK A. Developments in the non-traditional machining of particle reinforced metal matrix composites[J]. International Journal of Machine Tools and Manufacture,2014,86:44-61. [4] 袁巨龙,王志伟,文东辉,等. 超精密加工现状综述[J].机械工程学报,2007,43(1):35-48. YUAN J L,WANG Z W,WEN D H,et al. Review of the current situation of ultra-precision machining[J]. Journal of Mechanical Engineering,2007,43(1):35-48. [5] PARIKH V K,PATEL V,PANDYA D P,et al. Current status on manufacturing routes to produce metal matrix composites:State-of-the-art[J]. Heliyon,2023,9(2):e13558. [6] LIAO Z,ABDELHAFEEZ A,LI H,et al. State-of-the-art of surface integrity in machining of metal matrix composites[J]. International Journal of Machine Tools and Manufacture,2019,143:63-91. [7] BRINKSMEIER E,MUTLUGÜNES Y,KLOCKE F,et al. Ultra-precision grinding[J]. CIRP Annals,2010,59(2):652-671. [8] WU Z,SHEN J,PENG Y,et al. Review on ultra-precision bonnet polishing technology[J]. The International Journal of Advanced Manufacturing Technology,2022,121(5):2901-2921. [9] NOGUEIRA M L,GREIS N P,SHAH R,et al. Machine learning classification of surface fracture in ultra-precision diamond turning using CSI intensity map images[J]. Journal of Manufacturing Systems,2022,64:657-667. [10] ZHAO Z,TO S,WANG J,et al. A review of micro/nanostructure effects on the machining of metallic materials[J]. Materials & Design,2022,224:111315. [11] DANDEKAR C R,SHIN Y C. Modeling of machining of composite materials:A review[J]. International Journal of Machine Tools and Manufacture,2012,57:102-121. [12] KHOO S W,TAN C S,et al. A review of surface deformation and strain measurement using two-dimensional digital image correlation[J]. Metrology and Measurement Systems,2016,23(3);461-480. [13] ZHANG L,WU Z,WU C,et al. On the numerical modelling of composite machining[J]. Composites Part B:Engineering,2022,241:110023. [14] HAN X,XU D,AXINTE D,et al. On understanding the specific cutting mechanisms governing the workpiece surface integrity in metal matrix composites machining[J]. Journal of Materials Processing Technology,2021,288:116875. [15] DABADE U A,JOSHI S S. Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites[J]. Journal of Materials Processing Technology,2009,209(10):4704-4710. [16] KUMAR A,MAHAPATRA M M,JHA P K. Effect of machining parameters on cutting force and surface roughness of in situ Al-4.5%Cu/TiC metal matrix composites[J]. Measurement,2014,48:325-332. [17] XIONG Y,WANG W,JIANG R,et al. Mechanisms and FEM simulation of chip formation in orthogonal cutting in-situ TiB/7050Al MMC[J]. Materials,2018,11(4):606. [18] TENG X,CHEN W,HUO D,et al. Comparison of cutting mechanism when machining micro and nano-particles reinforced SiC/Al metal matrix composites[J]. Composite Structures,2018,203:636-647. [19] JOSHI S S,RAMAKRISHNAN N,RAMAKRISHNAN P,et al. Micro-structural analysis of chip formation during orthogonal machining of Al/SiCp composites[J]. Journal of Engineering Materials and Technology,2001,123(3):315-321. [20] SUN W,DUAN C,YIN W. Chip formation mechanism in machining of Al/SiCp composites based on analysis of particle damage[J]. Journal of Manufacturing Processes,2021,64:861-877. [21] FAN Y,XU Y,HAO Z,et al. Cutting deformation mechanism of SiCp/Al composites based on strain gradient theory[J]. Journal of Materials Processing Technology,2022,299:117345. [22] GAO X,ZHANG X,QIAN M,et al. Effect of reinforcement shape on fracture behaviour of SiC/Al composites with network architecture[J]. Composite Structures,2019,215:411-420. [23] WANG D,ZHANG R,LIN Z,et al. Effect of microstructure on mechanical properties of net-structured TiBw/TA15 composite subjected to hot plastic deformation[J]. Composites Part B:Engineering,2020,187:107798. [24] 高文理,邹坤. 往复镦挤对SiCp/2024铝基复合材料组织性能的影响[J]. 湖南大学学报,2014,41(12):11-16. GAO W L,ZOU K. Microstructures and mechanical properties of SiCp/2024 aluminum matrix composites by repetitive upsetting and extrusion[J]. Journal of Hunan University Natural Sciences,2014,41(12):11-16. [25] BEJJANI R. Machinability and modeling of cutting mechanism for Titanium Metal Matrix composites[D]. Montréal:École Polytechnique de Montréal,2012. [26] LI Z,DING W,LIU C,et al. Grinding performance of TiCp/Ti-6Al-4V composites with CBN wheels,part I:Experimental investigation and surface features[J]. Procedia CIRP,2018,77:525-528. [27] KONG X J,HU G,WANG M H,et al. Investigations on chip formation mechanism and surface integrity analysis in LAM of 45%SiCp/Al composites[J]. International Journal of Advanced Manufacturing Technology,2022,123(7-8):2279-2293. [28] 邓犇. SiCp/Al复合材料微细铣削加工机理与可切削性增强工艺研究[D]. 武汉:华中科技大学,2020. DENG Ben. Research on micro milling mechanisms and machinability enhancement process of SiCp/Al composites[D]. Wuhan:Huazhong University of Science and Technology,2020. [29] YAN C,ZHANG L. Single-point scratching of 6061 Al alloy reinforced by different ceramic particles[J]. Applied Composite Materials,1994,1(6):431-447. [30] NIU Q,JING L,LI C,et al. Study on effects of tool nose radius on the formation mechanism of edge defects during milling SiCp/Al composites[J]. The International Journal of Advanced Manufacturing Technology,2021,114(7):2261-2269. [31] TENG X,HUO D,CHEN W,et al. Finite element modelling on cutting mechanism of nano Mg/SiC metal matrix composites considering cutting edge radius[J]. Journal of Manufacturing Processes,2018,32:116-126. [32] 刘俊伟. SiCp/Al复合材料微铣削加工材料去除及参数优化研究[D]. 哈尔滨:哈尔滨工业大学,2018. LIU Junwei. Research on material removal and parameter optimization in micro milling SiCp/Al composites[D]. Harbin:Harbin Institute of Technology,2018. [33] MELKOTE S N,GRZESIK W,OUTEIRO J,et al. Advances in material and friction data for modelling of metal machining[J]. CIRP Annals,2017,66(2):731-754. [34] XIONG Y,WANG W,JIANG R,et al. Mechanisms and FEM simulation of chip formation in orthogonal cutting in-situ TiB2/7050Al MMC[J]. Materials (Basel,Switzerland),2018,11(4):606. [35] UMER U,MOHAMMED M K,ABIDI M H,et al. Modeling the effect of particle size while machining aluminum based metal matrix composite using an equivalent homogenous material approach[J]. Materials Today:Proceedings,2022,62:2981-2987. [36] SONG W,NING J,MAO X,et al. A modified johnson-cook model for titanium matrix composites reinforced with titanium carbide particles at elevated temperatures[J]. Materials Science and Engineering:A,2013,576:280-289. [37] XIANG J,XIE L,GAO F,et al. Methodology for dependence-based integrated constitutive modelling:An illustrative application to SiCp/Al composites[J]. Ceramics International,2018,44(10):11765-11777. [38] 孔宪俊. 45%SiCp/Al复合材料激光加热辅助车削性能研究[D]. 哈尔滨:哈尔滨工业大学,2017. KONG Xianjun. The turning properties study of laser assisted turning of 45%SiCp/Al composites[D]. Harbin:Harbin Institute of Technology,2018. [39] LEE H,CHOI J H,JO M C,et al. Effects of SiC particulate size on dynamic compressive properties in 7075-T6 Al-SiCp composites[J]. Materials Science and Engineering:A,2018,738:412-419. [40] NARDONE V C,PREWO K M. On the strength of discontinuous silicon carbide reinforced aluminum composites[J]. Scripta Metallurgica,1986,20(1):43-48. [41] LI Y,RAMESH K T. Influence of particle volume fraction,shape,and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain[J]. Acta Materialia,1998,46(16):5633-5646. [42] DANDEKAR C R,SHIN Y C. Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites[J]. Composites Part A:Applied Science and Manufacturing,2009,40(8):1231-1239. [43] XIANG J,XIE L,GAO F. Modeling high-speed cutting of SiCp/Al composites using a semi-phenomenologically based damage model[J]. Chinese Journal of Aeronautics,2021,34(8):218-229. [44] SUN W,DUAN C,YIN W. Development of a dynamic constitutive model with particle damage and thermal softening for Al/SiCp composites[J]. Composite Structures,2020,236:111856. [45] YANG M,DENG B,HUANG Y,et al. Microstructural based constitutive modeling and subsurface microhardness prediction in machining of network- structured TiBw/TA15 composites[J]. Composite Structures,2023,305:116470. [46] ZERILLI F J,ARMSTRONG R W. Dislocation- mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics,1987,61(5),1816-1825. [47] GAO C Y,ZHANG L C. A constitutive model for dynamic plasticity of FCC metals[J]. Materials Science and Engineering:A,2010,527(13):3138-3143. [48] SHAFIEIZAD A H,ZAREI-HANZAKI A,GHAMBARI M,et al. High temperature flow behavior and microstructure of Al-Cu/Mg 2 Si metal matrix composite[J]. Journal of Engineering Materials and Technology,Transactions of the ASME,2015,137(2):021006. [49] KISHAWY H A,KANNAN S,BALAZINSKI M. An energy based analytical force model for orthogonal cutting of metal matrix composites[J]. CIRP Annals,2004,53(1):91-94. [50] GHANDEHARIUN A,MOHAMED H,KISHAWY H A. Machining metal matrix composites:Novel analytical force model[J]. International Journal of Advanced Manufacturing Technology,2015,83:233-241. [51] GHANDEHARIUN A,KISHAWY H,BALAZINSKI M. On machining modeling of metal matrix composites:A novel comprehensive constitutive equation[J]. International Journal of Mechanical Sciences,2016,107:235-241. [52] PRAMANIK A,ZHANG L C,ARSECULARATNE J A. Prediction of cutting forces in machining of metal matrix composites[J]. International Journal of Machine Tools and Manufacture,2006,46(14):1795-1803. [53] SIKDER S,KISHAWY H A. Analytical model for force prediction when machining metal matrix composite[J]. International Journal of Mechanical Sciences,2012,59(1):95-103. [54] DENG B,ZHOU L,PENG F,et al. Analytical model of cutting force in micromilling of particle-reinforced metal matrix composites considering interface failure[J]. Journal of Manufacturing Science and Engineering,2018,140(8):081009. [55] SUN W,DUAN C,YIN W. Modeling of force and temperature in cutting of particle reinforced metal matrix composites considering particle effects[J]. Journal of Materials Processing Technology,2021,290:116991. [56] YIN W,DUAN C,LI Y,et al. Dynamic cutting force model for cutting SiCp/Al composites considering particle characteristics stochastic models[J]. Ceramics International,2021,47(24):35234-35247. [57] 段春争,孙伟,傅程,等. 切削SiCp/Al复合材料三相摩擦系数建模与模拟[J]. 哈尔滨工程大学学报,2019,40(3):509-517. DUAN C Z,SUN W,FU C,et al. Three-phase friction coefficient modeling and simulation in the cutting process of SiCp/Al composites[J]. Journal of Harbin Engineering University,2019,40(3):509-517. [58] LIU G,XIANG D,PENG P,et al. Establishment of scratching force model for micro-removal of SiCp/Al composites by ultrasonic vibration[J]. Journal of Materials Processing Technology,2022,307:117677. [59] PUGAZHENTHI A,KANAGARAJ G,DINAHARAN I,et al. Turning characteristics of in situ formed TiB2 ceramic particulate reinforced AA7075 aluminum matrix composites using polycrystalline diamond cutting tool[J]. Measurement,2018,121:39-46. [60] LIU J,LI J,XU C. Cutting force prediction on micromilling magnesium metal matrix composites with nanoreinforcements[J]. Journal of Micro and Nano-Manufacturing,2013,1(1):011010. [61] ZHAO G L,XIN L J,LI L,et al. Cutting force model and damage formation mechanism in milling of 70wt% Si/Al composite[J]. Chinese Journal of Aeronautics,2023,36(7):114-128. [62] LI C,DUAN C,CHANG B. Instantaneous cutting force model considering the material structural characteristics and dynamic variations in the entry and exit angles during end milling of the aluminum honeycomb core[J]. Mechanical Systems and Signal Processing,2022,181:109456. [63] 滕龙龙,项俊锋,王涛,等.颗粒增强金属基复合材料切削过程仿真综述[J].工具技术,2019,53(3):3-9. TENG L L,XIANG J F,WANG T,et al. Review upon simulation of cutting process of particulate reinforced metal matrix composites[J]. Tool Engineering,2019,53(3):3-9. [64] WANG X,POPOV V L,YU Z,et al. Evaluation of the cutting performance of micro-groove-textured PCD tool on SiCp/Al composites[J]. Ceramics International,2022,48(21):32389-32398. [65] LIU J,CHENG K,DING H,et al. An investigation of surface defect formation in micro milling the 45% SiCp/Al composite[J]. Procedia CIRP,2016,45:211-214. [66] LU S,ZHANG J,LI Z,et al. Cutting path-dependent machinability of SiCp/Al composite under multi-step ultra-precision diamond cutting[J]. Chinese Journal of Aeronautics,2021,34(4):241-252. [67] PRAMANIK A,ZHANG L C,ARSECULARATNE J A. An FEM investigation into the behavior of metal matrix composites:Tool-particle interaction during orthogonal cutting[J]. International Journal of Machine Tools and Manufacture,2007,47(10):1497-1506. [68] 袁松梅,邵梦博,李麒麟,等.碳化钛颗粒增强钢基复合材料超声振动辅助划痕仿真及试验研究[J].机械工程学报,2022,58(7):246-257. YUAN S M,SHAO M B,LI Q L,et al. An simulation and Experimental study on ultrasonic vibration-assisted scratching of titanium carbide particle-reinforced steel matrix composites[J]. Journal of Mechanical Engineering,2022,58(7):246-257. [69] ZHANG Z,MEN X,PAN Y,et al. Research on simulation of SiCp/Al finite element cutting based on cohesive model[J]. Materials Today Communications,2022,32:103848. [70] ELKHATEEB M G,SHIN Y C. Molecular dynamics-based cohesive zone representation of Ti6Al4V/TiC composite interface[J]. Materials & Design,2018,155:161-169. [71] PACHAURY Y,SHIN Y C. Assessment of sub-surface damage during machining of additively manufactured Fe-TiC metal matrix composites[J]. Journal of Materials Processing Technology,2019,266:173-183. [72] LU S,LI Z,ZHANG J,et al. Coupled effect of tool geometry and tool-particle position on diamond cutting of SiCp/Al[J]. Journal of Materials Processing Technology,2022,303:117510. [73] ZHOU Y,GU Y,LIN J,et al. Finite element analysis and experimental study on the cutting mechanism of SiCp/Al composites by ultrasonic vibration-assisted cutting[J]. Ceramics International,2022,48(23):35406-35421. [74] YU W,CHEN J,MING W,et al. Experimental and FEM study of cutting mechanism and damage behavior of ceramic particles in orthogonal cutting SiCp/Al composites[J]. Ceramics International,2021,47(5):7183-7194. [75] ZHOU J,LU M,LIN J,et al. Investigation and simulation based on mesoscopic model of SiCp/Al composites during precision machining:deformation mechanism and surface quality[J]. The International Journal of Advanced Manufacturing Technology,2022,119(3):2173-2186. [76] LIDORIKIS E,BACHLECHNER M,KALIA R,et al. Coupling of length scales:hybrid molecular dynamics and finite element approach for multiscale nanodevice simulations[J]. MRS Proceedings,2000,653(29):1-6. [77] ALY MOHAMED M,NG E,VELDHUIS S C,et al. Prediction of cutting forces in the micro-machining of silicon using a "hybrid molecular dynamic-finite element analysis" force model[J]. International Journal of Machine Tools and Manufacture,2006,46:1727-1739. [78] DANDEKAR C R,SHIN Y C. Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics[J]. Composites Part A:Applied Science and Manufacturing,2011,42(4):355-363. [79] DANDEKAR C R,SHIN Y C. Multi-scale modeling to predict sub-surface damage applied to laser-assisted machining of a particulate reinforced metal matrix composite[J]. Journal of Materials Processing Technology,2013,213(2):153-160. [80] WU Q,XU W,ZHANG L. Machining of particulate-reinforced metal matrix composites:An investigation into the chip formation and subsurface damage[J]. Journal of Materials Processing Technology,2019,274:116315. [81] BAIZEAU T,CAMPOCASSO S,ROSSI F,et al. Cutting force sensor based on digital image correlation for segmented chip formation analysis[J]. Journal of Materials Processing Technology,2016,238:466-473. [82] HARZALLAH M,POTTIER T,GILBLAS R,et al. A coupled in-situ measurement of temperature and kinematic fields in Ti-6Al-4V serrated chip formation at micro-scale[J]. International Journal of Machine Tools and Manufacture,2018,130-131:20-35. [83] BROWN M,M'SAOUBI R,CRAWFORTH P,et al. On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy[J]. Journal of Materials Processing Technology,2022,299:117378. [84] DAVIS B,DABROW D,IFJU P,et al. Study of the Shear strain and shear strain rate progression during titanium machining[J]. Journal of Manufacturing Science and Engineering,2018,140(5):051007. [85] YANG Z Y,ZHANG X M,NIE G,et al. A Comprehensive experiment-based approach to generate stress field and slip lines in cutting process[J]. Journal of Manufacturing Science and Engineering,2021,143:071014. [86] DAVIS B,DABROW D,JU L,et al. Study of Chip morphology and chip formation mechanism during machining of magnesium-based metal matrix composites[J]. Journal of Manufacturing Science and Engineering,2017,139(9). [87] GAVALDA DIAZ O,AXINTE D A. Towards understanding the cutting and fracture mechanism in ceramic matrix composites[J]. International Journal of Machine Tools and Manufacture,2017,118-119:12-25. [88] WANG X,WANG F,JIN X,et al. Numerical prediction of the chip formation and damage response in CFRP cutting with a novel strain rate based material model[J]. Composite Structures,2022,294:115746. [89] YANG M,ZHOU L,PENG F,et al. On understanding the chip formation mechanism of TiBw/TA15 composites with network architecture in micro cutting[J]. Composite Structures,2021,278:114721. |
[1] | 李晗, 章程, 陈杰, 安庆龙, 陈明. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 206-217. |
[2] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[3] | 袁松梅, 邵梦博, 李麒麟, 高晓星, 陈博川. 碳化钛颗粒增强钢基复合材料超声振动辅助划痕仿真及试验研究[J]. 机械工程学报, 2022, 58(7): 246-257. |
[4] | 史兰宇, 王晨光, 陈杰, 郭国强, 黄文斌, 安庆龙, 明伟伟, 陈明. 高温合金蜂窝芯高速铣削材料去除机理与损伤行为[J]. 机械工程学报, 2022, 58(23): 284-295. |
[5] | 卢守相, 杨秀轩, 张建秋, 周聪, 殷景飞, 张璧. 关于硬脆材料去除机理与加工损伤的理性思考[J]. 机械工程学报, 2022, 58(15): 31-45. |
[6] | 邓国威, 谭超林, 王迪, 杨永强. 增材制造高体积陶瓷增强马氏体钢缺陷抑制与机理研究[J]. 机械工程学报, 2021, 57(17): 243-252. |
[7] | 高尚, 耿宗超, 吴跃勤, 王紫光, 康仁科. 石英玻璃超精密磨削加工的表面完整性研究[J]. 机械工程学报, 2019, 55(5): 186-195. |
[8] | 丁文锋, 苗情, 李本凯, 徐九华. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报, 2019, 55(1): 189-215. |
[9] | 高尚, 朱祥龙, 康仁科, 郭东明, 王紫光, 张璧. 微晶玻璃超精密磨削的表面/亚表面损伤及其材料去除机理研究*[J]. 机械工程学报, 2017, 53(7): 180-188. |
[10] | 查慧婷, 冯平法, 张建富. 高体积分数SiCp/Al复合材料旋转超声铣磨加工的试验研究[J]. 机械工程学报, 2017, 53(19): 107-113. |
[11] | 程军;王超;温雪龙;尹国强;巩亚东;宋华. 单晶硅微尺度磨削材料去除过程试验研究[J]. , 2014, 50(17): 194-200. |
[12] | 赵清亮;姜涛;董志伟;樊荣伟;于欣;罗健. 飞秒激光加工SiC的烧蚀阈值及材料去除机理[J]. , 2010, 46(21): 172-177. |
[13] | 李建辉;李洪洋;李春峰. 基于滑移线场的SiCw/6061复合材料挤压变形晶须形貌分析[J]. , 2008, 44(12): 57-61. |
[14] | 李斌;许庆彦;李旭东;柳百成. Al-Si/SiCp复合材料微观组织模拟及颗粒分布均匀性定量预测[J]. , 2007, 43(1): 202-207. |
[15] | 姜春晓;杨方;齐乐华. 复合材料液态浸渗挤压过程浸渗和传热行为的耦合分析[J]. , 2004, 40(10): 10-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||