• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (7): 246-257.doi: 10.3901/JME.2022.07.246

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

碳化钛颗粒增强钢基复合材料超声振动辅助划痕仿真及试验研究

袁松梅1,2,3, 邵梦博1,2,3, 李麒麟1,2,3, 高晓星1,2,3, 陈博川1,2,3   

  1. 1. 北京航空航天大学机械工程及自动化学院 北京 100191;2. 北京市高效绿色数控加工工艺及装备工程技术研究中心 北京 100191;3. 北京航空航天大学宁波创新研究院高精尖中心 宁波 315100
  • 收稿日期:2021-11-08 修回日期:2022-03-22 出版日期:2022-05-20 发布日期:2022-05-20
  • 通讯作者: 袁松梅(通信作者),女,1971年出生,博士,教授,博士研究生导师。主要研究方向为先进加工技术及装备、医工结合。E-mail:yuansm@buaa.edu.cn
  • 作者简介:邵梦博,男,1996年出生,硕士研究生。主要研究方向为超声振动加工。E-mail:shaomengbo@buaa.edu.cn
  • 基金资助:
    基础科研计划资助项目(JCKY2018601B201)。

An Simulation and Experimental Study on Ultrasonic Vibration-assisted Scratching of Titanium Carbide Particle-reinforced Steel Matrix Composites

YUAN Songmei1,2,3, SHAO Mengbo1,2,3, LI Qilin1,2,3, GAO Xiaoxing1,2,3, CHEN Bochuan1,2,3   

  1. 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191;2. Beijing Engineering Technological Research Center of High-Efficient and Green CNC Machining Process andEquipment, Beijing 100191;3. Advanced Manufacturing Center, Ningbo Institute of Technology, Beihang University, Ningbo 315100
  • Received:2021-11-08 Revised:2022-03-22 Online:2022-05-20 Published:2022-05-20

摘要: 碳化钛(TiC)颗粒增强钢基复合材料具有较高的强度、硬度和耐磨性,在精密航空航天零件中广泛应用。由于材料中TiC硬质颗粒的存在,导致了加工表面质量差、刀具磨损严重等问题,超声振动辅助加工被尝试用于解决该问题,但在超声振动辅助条件下针对该材料的去除机理尚不明确,参数优化缺乏理论指导,通过开展超声振动辅助划痕仿真及试验研究,探究该材料在超声振动辅助条件下的去除机理和表面创成机制。首先基于TiC颗粒大小、形态、分布特征以及颗粒和基体的材料特性建立了材料的有限元仿真模型,然后分析了单颗金刚石超声振动辅助划痕过程中材料去除特性以及表面创成机制,并开展了验证试验。结果表明:仿真模型的划痕力预测值与试验值误差小于16%;在划擦过程中,TiC颗粒受到的最大应力为拉应力,基体受到的最大应力为压应力;与传统划痕相比,超声振动辅助划痕过程中单颗金刚石与工件间歇性分离,划痕力呈现周期性变化,平均划痕力降低16%-50%;在超声振动辅助条件下,由于单颗金刚石对TiC颗粒的锤击作用,基体材料塑性变形更大,更多的颗粒与基体脱粘变成切屑,导致划痕表面形成更大的空腔,此研究可为后续加工过程中工艺参数选择提供指导。

关键词: 碳化钛颗粒增强钢基复合材料, 超声振动辅助划痕, 材料去除机理, 有限元仿真

Abstract: Titanium carbide (TiC) particle-reinforced steel matrix composites have high strength, hardness and wear resistance and are widely used in precision aerospace parts. Due to the presence of TiC hard particles of the material, resulting in poor machined surface quality and severe tool wear, Ultrasonic vibration-assisted machining has been attempted to solve this problem, but the removal mechanism for this material under ultrasonic vibration-assisted machining conditions is unclear. By conducting ultrasonic vibration-assisted scratch simulation and experimental studies, the removal mechanism of this material under ultrasonic vibration-assisted conditions is investigated. A finite element simulation model of the material is first developed based on the size, morphology and distribution characteristics of the TiC particles and the material properties of the particles and the substrate, and then the material removal characteristics and surface creation mechanism during ultrasonic vibration-assisted scratching of a single diamond are analysed and validation tests were carried out. The results show that: the predicted scratch force of the simulation model is less than 16% of the experimental value; during the scratching process, the maximum stress on the TiC particles is tensile and the maximum stress on the matrix is compressive; compared with conventional scratching, the single diamond is intermittently separated from the workpiece during the ultrasonic vibration-assisted scratching process, and the scratch force shows a cyclical change, with an average scratch force reduction of 16%-50%. Under ultrasonic vibration-assisted conditions, the plastic deformation of the substrate material is greater due to the hammering effect of the single diamond on the TiC particles, and more particles are debonded from the substrate into chips, resulting in a larger cavity on the scratch surface, which can provide guidance for the selection of process parameters in the subsequent machining process.

Key words: titanium carbide particle-reinforced steel matrix composites, ultrasonic vibration-assisted scratching, material removal mechanism, finite element simulation

中图分类号: