机械工程学报 ›› 2024, Vol. 60 ›› Issue (4): 391-408.doi: 10.3901/JME.2024.04.391
戴国洪1, 张道涵1, 彭思敏2, 苗一凡2, 卓悦2, 杨瑞鑫3, 于全庆4
收稿日期:
2023-06-10
修回日期:
2023-12-08
出版日期:
2024-02-20
发布日期:
2024-05-25
通讯作者:
彭思敏,男,1980年出生,博士,副教授,硕士研究生导师。主要研究方向为电池储能系统控制与管理、新能源汽车控制技术。E-mail:siminpeng@ycit.edu.cn
作者简介:
戴国洪,男,1966年出生,博士,教授,博士研究生导师。主要研究方向为计算机软件及计算机应用、机械工业。E-mail:dgh@cczu.edu.cn;张道涵,男,1998年出生。主要研究方向为人工智能技术在电池状态估计中的应用。E-mail:daohanzhang2023@163.com
基金资助:
DAI Guohong1, ZHANG Daohan1, PENG Simin2, MIAO Yifan2, ZHUO Yue2, YANG Ruixin3, YU Quanqing4
Received:
2023-06-10
Revised:
2023-12-08
Online:
2024-02-20
Published:
2024-05-25
摘要: 目前先进的电动汽车开发和应用已成为实现“脱碳”的关键技术。准确的电池健康状态(State of health,SOH)预估可有效地表征动力电池性能,对电动汽车动力电池维护和寿命管理具有重要意义。近年来,以深度学习、强化学习和大数据技术等为代表的新一代人工智能技术在电动汽车电池状态预估的应用已成为研究热点。首先简要介绍人工智能技术、SOH的含义以及影响SOH主要因素,然后分别从电池单体与电池系统的角度对几种人工智能模型在SOH预估中的研究进行总结与讨论,最后结合大数据、云计算、区域链等新兴技术,对电池健康状态预估问题进行展望,为提升当前动力电池全生命周期管理能力提供一些思路。
中图分类号:
戴国洪, 张道涵, 彭思敏, 苗一凡, 卓悦, 杨瑞鑫, 于全庆. 人工智能在动力电池健康状态预估中的研究综述[J]. 机械工程学报, 2024, 60(4): 391-408.
DAI Guohong, ZHANG Daohan, PENG Simin, MIAO Yifan, ZHUO Yue, YANG Ruixin, YU Quanqing. Overview of Artificial Intelligence in Health Prediction of Power Battery[J]. Journal of Mechanical Engineering, 2024, 60(4): 391-408.
[1] LIU Wei,TOBIAS P,CHAU K T,et al. Overview of batteries and battery management for electric vehicles[J].Energy Reports,2022,8:4058-4084. [2] LIPU M S H,HANNAN M A,HUSSAIN A,et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles:Challenges and recommendations[J]. Journal of Cleaner Production,2018,205:115-133. [3] TIAN Huixin,QIN Pengliang,LI Kun,et al. A review of the state of health for lithium-ion batteries:Research status and suggestions[J]. Journal of Cleaner Production,2020,261:120813. [4] YANG Sijia,ZHANG Caiping,JIANG Jiuchun,et al.Review on state-of-health of lithium-ion batteries:Characterizations,estimations and applications[J]. Journal of Cleaner Production,2021,314:128015. [5] 刘月峰,张公,张晨荣,等.锂离子电池RUL预测方法综述[J].计算机工程,2020,46(4):11-18.LIU Yuefeng,ZHANG Gong,ZHANG Chenrong,et al.Review of RUL prediction method for lithium-batteries[J].Computer Engineering,2020,46(4):11-18. [6] RAUF H,KHALID M,ARSHAD N. Machine learning in state of health and remaining useful life estimation:Theoretical and technological development in battery degradation modelling[J]. Renewable and Sustainable Energy Reviews,2022,156:111903. [7] 熊庆,邸振国,汲胜昌.锂离子电池健康状态估计及寿命预测研究进展综述[J/OL].高电压技术,1-14[2024-01-24]. https://doi.org/10.13336/j.1003-6520.hve.20221843. XIONG Qing,DI Zhenguo,JI Shengchang. Review on health state estimation and life prediction of lithium-ion batteries[J/OL]. High Voltage Engineering, 1-14[2024-01-24]. https://doi.org/10.13336/j.1003-6520.hve.20221843. [8] TEO L, MARC D, HASSNA E, et al. Artificial intelligence applied to battery research:Hype or reality[J].Chemical Reviews,2021,122(12):10899-10969. [9] 中国电子技术标准化研究院.人工智能标准化白皮书2018版[R].北京:中国电子技术标准化研究院,2018.China Institute of Electronic Technoiogy Standardization.Standard white book of artificial intelligence in 2018version[R]. Beijing:China Institute of Electronic Technoiogy Standardization,2018. [10] OLABI A G,ABDELGHAFAR A A,MAGHRABIE H M, et al. Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems[J]. Thermal Science and Engineering Progress,2023:101730. [11] 邱陈辉,黄崇飞,夏顺仁,等.人工智能在医学影像辅助诊断中的应用综述[J].航天医学与医药工程,2021,24(5):407-414.QIU Chenhui,HUANG Chongfei,XIA Shunren,et al.Application review of artifical intelligence in medical images aided diagnosis[J]. Space Medicine & Medical Engineering,2021,24(5):407-414. [12] CAO Mengda,ZHANG Tao,LIU Yajie,et al. An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator[J]. Energy,2022,257:124725. [13] DING Xinchao,CUI Zhongrui,YUAN Haitao,et al.Diagnosis of connection fault for parallel-connected lithium-ion batteries based on long short-term memory networks[J]. Journal of Energy Storage,2022,55:105552. [14] WANG Xi,LI Shukai,CAO Yuan,et al. Dynamic speed trajectory generation and tracking control for autonomous driving of intelligent high-speed trains combining with deep learning and backstepping control methods[J].Engineering Applications of Artificial Intelligence,2022,115,105230. [15] MA Yan,YAO Meihao,LIU Hongcheng,et al. State of health estimation and remaining useful life prediction for lithium-ion batteries by improved particle swarm optimization-back propagation neural network[J]. Journal of Energy Storage,2022,52:104750. [16] WEI Yupeng,WU Dazhong. Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisme[J]. Journal of Energy Pre-proof,2023,230:108947. [17] CHENG Gong,WANG Xinzhi,HE Yurong. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory netural network[J]. Energy,2021,232:121022. [18] XIONG Rui, ZHANG Yongzhi, WANG Ju, et al.Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles[J].IEEE Transactions on Vehicular Technology,2019,68(5):4110-4121. [19] JIA Jianfang,LIANG Jianyu,SHI Yuanhao,et al. SOH and RUL prediction of lithium-ion batteries based on gaussian process regression with indirect health indicators[J]. Energies,2020,13(2):375. [20] LIU Datong,YIN Xuehao,SONG Yuchen,et al. An on-line state of health estimation of lithium-ion battery using unscented particle filter[J]. IEEE Access,2018,6:40990-41001. [21] LIPU M S H,ANSARI S,MIAH M S,et al. Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system:Methods,implementations, issues and prospects[J]. Journal of Energy Storage,2022,55:105752. [22] 陈良臣,傅德印.面向小样本数据的机器学习方法研究综述[J].计算机工程,2022,48(11):1-13.CHEN Liangchen,FU Deyin. Survey on machine learning methods for small sample data[J]. Computer Engineering,2022,48(11):1-13. [23] RIDZUAN F,ZAINON W M N W. A review on data cleansing methods for big data[J]. Procedia Computer Science,2019,161:731-738. [24] 张友浩,赵鸣,徐梦瑶,等.时序数据挖掘的预处理研究综述[J].智能计算机与应用,2021,11(1):74-78.ZHANG Youhao,ZHAO Ming,XU Mengyao,et al.Summary of research on preprocessing of time series data mining[J]. Intelligent Computer and Applications,2021,11(1):74-78. [25] HONG Jichao,WANG Zhenpo,CHEN Wen,et al. Online accurate state of health estimation for battery systems on real world electri vehicles with variable driving conditions considered[J]. Journal of Cleaner Production,2021,294:125814. [26] 周仁,张向文.基于实车数据和BP-Ada Boost算法的电动汽车动力电池健康状态估计[J].科学技术与工程,2022,22(21):9388-9406.ZHOU Ren,ZHANG Xiangwen. Electric vehicle power battery state of health estimation based on real vehicle data and BP-AdaBoost algorithm[J]. Science Technology and Engineering,2022,22(21):9388-9406. [27] 王雪,游国栋,房成信,等.基于IMOCS-BP神经网络的锂离子电池SOH估计[J/OL].电源学报,1-11[2024-01-24]. http://kns.cnki.net/kcms/detail/12.1420.TM.20210823.0917.002.html. WANG Xue,YOU Guodong,FANG Chengxin,et al.SOH estimation of lithium-ion battery based on IMOCSBP neural network[J/OL]. Journal of Power Supply,1-11[2024-01-24]. http://kns.cnki.net/kcms/detail/12.1420.TM.20210823.0917.002.html. [28] 徐宏东,高海波,林治国,等.基于CS-SVR模型的锂离子电池SOH预测[J].电池,2020,50(5):424-427.XU Hongdong,GAO Haibo,LIN Zhiguo,et al. Prediction for SOH of Li-ion battery based on CS-SVR model[J].Battery Bimonthly,2020,50(5):424-427. [29] GUO Yongfang,HUANG Kai,HU Xiaoya,et al. A state-of-health estimation method of lithium-ion batteries based on multi-feature extracted from constant current charging curve[J]. Journal of Energy Storage,2021,36:102372. [30] KIM S,CHOI Y Y,KIM K J,et al. Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning[J]. Journal of Energy Storage,2021,41:102893. [31] ROMAN D,SAXENA S,ROBU V,et al. Machine learning pipeline for battery state-of-health estimation[J].Nature Machine intelligence,2021,3:447-456. [32] FAN Xinyuan,ZHNAG Weige,SUN Bingxiang,et al.Battery pack consistency modeling based on generative adversarial networks[J]. Energy,2022,239:122419. [33] SCHMITT J,HORSTKÖTTER I,BÄKER B. Effective estimation of battery state-of-health by virtual experiments via transfer-and meta-learning[J]. Journal of Energy Storage,2023,63:106969. [34] AGGARWAL A, MITTAL M, BATTINENI G.Generative adversarial network:An overview of theory and applications[J]. International Journal of Information Management Data Insights,2021,1(1):100004. [35] KIM S,CHOI Y Y,CHOI J I. Impedance-based capacity estimation for lithium-ion batteries using generative adversarial network[J]. Applied Energy, 2022, 308:118317. [36] 王震坡,王秋诗,刘鹏,等.大数据驱动的动力电池健康状态估计方法综述[J].机械工程学报,2023,59(2):151-168.WANG Zhenpo,WANG Qiushi,LIU Peng,et al. Review on techniques for power battery state of health estimation driven by big data methods[J]. Journal of Mechanical Engineering,2023,59(2):151-168. [37] ZHANG Lisheng,WANG Wentao,YU Hanqing,et al.Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep learning model[J]. Journal of Power Sources,2022,25(12):105638. [38] ZHAO Hongqian,CHEN Zheng,SHU Xing,et al. State of health estimation for lithium-ion batteries based on hybrid attention and deep learning[J]. Reliability Engineering and System Safety,2023,232:109066. [39] LI Xiaoyu,YUAN Changgui,WANG. Zhenpo. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression[J].Energy,2020,203:117852. [40] JORGE I,MESBAHI T,SAMET A,et al. Time series feature extraction for lithium-ion batteries state-of-health prediction[J]. Journal of Energy Storage,2023,59:106436. [41] 王萍,弓清瑞,张吉昂,等.一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J].电工技术学报,2021,36(24):5201-5212.WANG Ping,GONG Qingrui,ZHANG Ji'ang,et al. An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society,2021,36(24):5201-5212. [42] CUI Zhiquan,WANG Chunhui,GAO Xuhong,et al. State of health estimation for lithium-ion battery based on the coupling-loop nonlinear autoregressive with exogenous inputs neural network[J]. Electrichinica Acta,2021,393:139047. [43] MA Yan,SHAN Ce,GAO Jinwu,et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J].Energy,2022,251:123973. [44] DA VEIGA S, MARREL A. Gaussian process regression with linear inequality constraints[J]. Reliability Engineering & System Safety,2020,195:106732. [45] KHALEGHI S,FIROUZ Y,VAN MIERLO J,et al.Develo**a real-time data-driven battery health diagnosis method, using time and frequency domain condition indicators[J]. Applied Energy,2019,255:113813. [46] WANG Jia, ZHAO Rui, HUANG Qiu'an, et al.High-efficient prediction of state of health for lithium-ion battery based on AC impedance feature tuned with Gaussian process regression[J]. Journal of Power Sources,2023,561:232737. [47] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J]. Journal of Power Sources,2020,467:228358. [48] 王萍,彭香园,程泽.基于DTV-IGPR模型的锂离子电池SOH估计方法[J].汽车工程,2021,43(11):1710-1719.WANG Ping, PENG Xiangyuan, CHENG Ze. SOH estimation method for lithium-ion batteries based on DTV-IGPR model[J]. Automotive Engineering,2021,43(11):1710-1719. [49] 彭思敏,徐璐,张伟峰,等.锂离子电池功率状态预测方法综述[J].机械工程学报,2022,58(20):361-378.PENG Simin,XU Lu,ZHANG Weifeng,et al. Overview of state of power prediction methods for lithium-ion batteries[J]. Journal of Mechanical Engineering,2022,58(20):361-378. [50] 李素,袁志高,王聪,等.群智能算法优化支持向量机参数综述[J].智能系统学报,2018,13(1):70-84.LI Su,YUAN Zhigao,WANG Cong,et al. Optimization of support vector machine parameters based on group intelligence algorithm[J]. CAAI Transactions on Intelligent Systems,2018,13(1):70-84. [51] PAN Wenjie, CHEN Qi, ZHU Maotao, et al. A data-driven fuzzy information granulation approach for battery state of health forecasting[J]. Journal of Power Sources,2020,475:228716. [52] TAN Xiaojun,ZHAN Di,LÜ Pengxiang,et al. Online state-of-health estimation of lithium-ion battery based on dynamic parameter identifcation at multi timescale and support vector regression[J]. Journal of Power Sources,2021,484:229233. [53] SONG Yuchen,LIU Datong,LIAO Haitao,et al. A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries[J]. Applied Energy,2020,261:114408. [54] 陈长征,莫长涛.激光准直测量中二维位置敏感器件非线性修正算法研究[J].机械工程学报,2004,40(4):127-130.CHEN Changzheng,MO Changtao. Study on correction of non-linearity to two-dimension position sensitive detector for laser alignment measurement[J]. Jounral of Mechanical Engineering,2004,40(4):127-130. [55] 胡伍生,沙月进.神经网络BP算法的误差分级迭代法[J].东南大学学报,2003,33(3):376-378.HU Wusheng,SHA Yuejin. Error grade iterative method of BP neural networks[J]. Journal of Southeast University,2003,33(3):376-378. [56] 吴琼,徐锐良,杨晴霞,等.基于PCA和GA-BP神经网络的锂电池容量估算方法[J].电子测量技技术,2022,45(6):66-71.WU Qiong, XU Ruiliang, YANG Qingxia, et al.Lithiumbatterycapacity estimation method based on PCA and GA-BP neural network[J]. Electronic Measurement Technology,2022,45(6):66-71. [57] 张凯飞,张金龙,吕满平.基于SSA-BPNN的锂离子电池SOH估算[J/OL].电源学报,1-13[2024-01-24].http://kns.cnki.net/kcms/detail/12.1420.TM.20220222.1756.015.html. ZHANG Kaifei, ZHANG Jinlong, LÜ Manping.Estimation of lithium-ion battery SOH based on SSA-BPNN[J/OL]. Joural of Power Supply,1-13[2024-01-24]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220222.1756.015.html. [58] 徐元中,曹翰林,吴铁洲.基于SA-BP神经网络算法的电池SOH预测[J].电源技术,2020,44(3):341-345.XU Yuanzhong,CAO Hanlin,WU Tiezhou. Estimation of SOH for battery based on SA-BP neural network[J].Chinese Journal of Power Sources,2020,44(3):341-345. [59] PENG Simin,ZHU Liyang,DOU Zhenlan,et al. Method of site selection and capacity setting for battery energy storage system in distribution networks with renewable energy sources[J]. Energies,2023,16:3899. [60] LIU Jialong,DUAN Qiangling,QI Kaixuan,et al.Capacity fading mechanisms and state of health prediction of commercial lithium-ion battery in total lifespan[J].Journal of Energy Storage,2022,46:103910. [61] GOH H H,LAN Z,ZHANG D,et al. Estimation of the state of health (SOH) of batteries using discrete curvature feature extraction[J]. Journal of Energy Storage,2022,50:104646. [62] WANG Chao,WANG Shunli,ZHOU Jinzhi,et al. A novel back propagation neural network-dual extended Kalman filter method for state-of-charge and state-of-health co-estimation of lithium-ion batteries based on limited memory least square algorithm[J]. Journal of Energy Storage,2023,59:106563. [63] HEINRICH F,PRUCKNER M. Virtual experiments for battery state of health estimation based on neural networks and in-vehicle data[J]. Journal of Energy Storage,2022,48:103856. [64] LI P,ZHANG Z,GROSU R,et al. An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries[J]. Renewable and Sustainable Energy Reviews,2022,156:111843. [65] 李苏阳,陈富安.基于注意力机制的双向LSTM锂电池SOH估算模型[J].电源技术,2022,46(7):739-742.LI Suyang,CHEN Fu'an. Lithium battery SOH prediction based on Bi-LSTM attention mechanism[J]. Chinese Journal of Power Sources,2022,46(7):739-742. [66] SUN Hanlei, YAN Dongfang, DU Jiaxuan, et al.Prediction of Li-ion battery state of health basedon data-driven algorithm[J]. Energy Reports,2022,8:442-449. [67] ZHENG Yuxuan,HUA Jiaxiang,CHEN Jianjun,et al.State of health estimation for lithium battery random charging process based on CNN-GRU method[J]. Energy Reports,2023,9:1-10. [68] GUO Fei,WU Xiongwei,LIU Lili,et al. Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network[J]. Journal Pre-proof,2023,270:126880. [69] LÜ Zhiqiang,WANG Geng,GAO Renjing. Synchronous state of health estimation and remaining useful lifetime prediction of Li-ion battery through optimized relevance vector machine framework[J]. Energy,2022,251:123852. [70] REN Pu,WANG Shunli,CHEN Xianpei,et al. A novel multiple training-scale dynamic adaptive cuckoo search optimized long short-term memory neural network and multi-dimensional health indicators acquisition strategy for whole life cycle health evaluation of lithium-ion batteries[J]. Electrochimica Acta,2022,435:141404. [71] ALIREZA N,MARYAM A S,TARIQ SD. Lithium-ion battery prognostics through reinforcement learning based on entropy measures[J].Algorithms,2022,15(11):393. [72] MAWONOU K S R,EDDAHECH A,DUMUR D,et al.State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking[J].Journal of Power Sources,2021,484:229154. [73] WU Ji,CHEN Junxiong,FENG Xiong,et al. State of health estimation of lithium-ion batteries using autoencoders and ensemble learning[J]. Journal of Energy Storage,2022,55:105708. [74] LI Xin,MA Yan. A method for simplified modeling and capacity,state of charge,current distribution analysis based on arbitrary topology connection battery pack[J].Journal of Energy Storage,2023,57:106206. [75] YU Quanqing,HUANG Yukun,TANG Aihua,et al.OCV-SOC-temperature relationship construction and state of charge estimation for a series-parallel lithium-ion battery pack[J]. IEEE Transactions on Intelligent Transportation Systems,2023,24(6):6362-6371. [76] MI C,MASRUR M,GAO D. Hybrid electric vehicles:Principles and applications with practical perspectives[M].New York:John Wiley & Sons,2017. [77] LEE P Y,KWON S,KANG D,et al. Principle component analysis-based optimized feature extraction merged with nonlinear regression model for improved state-of-health prediction[J]. Journal of Energy Storage,2022,48:104026. [78] HE Zhigang, SHEN Xiaoyu, SUN Yanyan, et al.State-of-health estimation based on real data of electric vehicles concerning user behavior[J]. Journal of Energy Storage,2021,41:102867. [79] ZHANG Qi,WANG Dafang,YANG Bowen,et al. An electrochemicalimpedance model of lithium-ion battery for electric vehicle application[J]. Journal of Energy Storage,2022,50:104182. [80] ZHANG Shuzhi,PENG Nian,LU Haibin,et al. A systematic and low-complexity multi-state estimation framework for series-connected lithium-ion battery pack under passive balance control[J]. Journal of Energy Storage,2022,48:103989. [81] LEE C H,WU C H. Collecting and mining big data for electric vehicle systems using battery modeling data[C]//2015 12th International Conference on Information Technology-New Generations. IEEE,2015:626-631. [82] TIAN Jingpeng,RUI Xiong,SHEN Weixiang,et al. Deep neural network battery charging curve prediction using 30points collected in 10 min[J]. Joule,2021,5:1521-1534. [83] TIAN Jingpeng,RUI Xiong,SHEN Weixiang,et al.Flexible battery state of health and state of charge estimation using partial[J]. Energy Storage Materials,2022,51:372-381. [84] XIONG Rui, SUN Yui, WANG Chenxu, et al. A data-driven method for extracting aging features to accurately predict the battery health[J]. Energy Storage Materials,2023,57:460-470. [85] LI Shuangqi, HE Hongwen, ZHAO Pengfei, et al.Health-conscious vehicle battery state estimation based on deep transfer learning[J]. Applied Energy,2022,316:119120. [86] 夏淼.基于云计算的电动汽车智能充电导航方法研究[D].武汉:武汉理工大学,2019.XIA Miao,Research on intelligent charing navigation method of electric vehicle based on cloud computing[D].Wuhan:Wuhan University of Technology,2019. [87] 刘强.锂离子电池状态云边协同估计策略研究[D].济南:山东大学,2022.LIU Qiang. Research on cloud-edge collaborative estimation strategy of lithium-ion battery state[D]. Jinan:Shandong University,2022. [88] 周航,刘晓龙,张梦迪,等.基于简单循环单元的储能锂离子电池SOC和SOH联合估计方法[J].电气工程学报,2023,18(3):332-340.ZHOU Hang,LIU Xiaolong,ZHANG Mengdi,et al. Joint SOC and SOH estimation method for energy storage lithium-ion batteries based on simple recurrent unit[J].Journal of Electrical Engineering, 2023, 18(3):332-340. [89] ZHOU Yong,GU Huanghui,SU Teng. Remaining useful life prediction with probability distribution for lithium-ion batteries based on edge and cloud collaborative computation[J]. Journal of Energy Storage,2021,44:103342. [90] 潘吉飞,黄德才.区域链对人工智能的影响[J].计算机科学,2018,45(11):53-57,70.PAN Jifei, HUANG Decai. Impact of blockchain technology on AI[J]. Computer Science,2018,45(11):53-57,70. [91] MOHSEN A,BILGE G C. Digital twin:Benefits,use cases,challenges,and opportunities[J]. Decision Analytics Journal,2023,6:100165. [92] UROOJ S,ALROWAIS F,TEEKARAMAN Y,et al. IoT based electric vehicle application using boosting algorithm for smart cities[J]. Energies,2021,14(4):1072. [93] STACCHIO L,ANGELI A,MARFIA G. Empowering digital twins with extended reality collaborations[J].Virtual Reality & Intelligent Hardware,2022,4(6):487-505. [94] 杨世春,李强伟,周思达,等.面向智能化管理的数字孪生电池构建方法[J].北京航空航天大学学报,2022,48(9):1734-1744.YANG Shichun, LI Qiangwei, ZHOU Sida, et al.Construction of digital twin model of lithium-ion battery for intelligent management[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(9):1734-1744. [95] 杨世春,周思达,周新岸,等.动力电池云端管理关键技术研究综述[J].机械工程学报,2023,59(10):134-151.YANG Shichun,ZHOU Sida,ZHOU Xin'an,et al.Research progress of cloud management for power batteries on electric vehicles[J]. Journal of Mechanical Engineering,2023,59(10):134-151. [96] 华旸,周思达,何2),等.车用锂离子动力电池组均衡管理系统研究进展[J].机械工程学报,2019,55(20):73-84.HUA Yang,ZHOU Sida,HE Rong,et al. Review on lithium-ion battery equilibrium technology applied for evs[J]. Journal of Mechanical Engineering,2019,55(20):73-84. [97] WANG Zuolu,FENG Guojin,ZHEN Dong,et al. A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles[J].Energy Reports,2021,7:5141-5161. |
[1] | 严如强, 许文纲, 王志颖, 朱启翔, 周峥, 赵志斌, 孙闯, 王诗彬, 陈雪峰, 张军辉, 徐兵. 航空发动机燃油控制系统故障诊断技术研究进展与挑战[J]. 机械工程学报, 2024, 60(4): 3-31. |
[2] | 蒋翔宇, 冯毅雄, 洪兆溪, 胡炳涛, 司恒远, 谭建荣. 基于多级数据融合的核电站运行功能健康状态评估[J]. 机械工程学报, 2024, 60(4): 200-211. |
[3] | 蒋帅, 陈铖, 段砚州, 熊瑞. 温度和老化影响下的锂离子电池荷电状态和健康状态联合估计方法研究[J]. 机械工程学报, 2024, 60(18): 266-275. |
[4] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[5] | 刘征宇, 张政, 郭乐凯, 孟辉, 刘项. 基于经验模态分解的锂离子电池健康状态预测[J]. 机械工程学报, 2024, 60(14): 272-281. |
[6] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
[7] | 温楷儒, 陈祝云, 黄如意, 李东鹏, 李巍华. 基于可解释时空图卷积网络的多传感数据融合诊断方法[J]. 机械工程学报, 2024, 60(12): 158-167. |
[8] | 周航, 刘晓龙, 张梦迪, 孙金磊, 程泽. 基于简单循环单元的储能锂离子电池SOC和SOH联合估计方法*[J]. 电气工程学报, 2023, 18(3): 332-340. |
[9] | 何洪文, 王浩宇, 王勇, 李双歧. 基于实车运行数据的锂离子电池健康状态估计[J]. 机械工程学报, 2023, 59(22): 46-58. |
[10] | 王震坡, 王秋诗, 刘鹏, 张照生. 大数据驱动的动力电池健康状态估计方法综述[J]. 机械工程学报, 2023, 59(2): 151-168. |
[11] | 郭锐, 王涛, 李永涛, 王建伟, 蔡伟, 赵静一. 基于贝叶斯深度学习的外啮合齿轮泵健康状态识别研究[J]. 机械工程学报, 2023, 59(16): 397-405. |
[12] | 郭锐, 张印浩, 牛雯雯, 骆雄帅, 蔡伟, 王建伟, 王岳峰, 赵静一. 基于GLCT及CPA-SVM的变转速齿轮泵健康状态分类研究[J]. 机械工程学报, 2023, 59(14): 310-319. |
[13] | 陶飞, 张辰源, 刘蔚然, 张贺, 马昕, 高鹏飞, 张建康. 数字工程及十个领域应用展望[J]. 机械工程学报, 2023, 59(13): 193-215. |
[14] | 汪俊亮, 高鹏捷, 张洁, 王力翚. 制造大数据分析综述:内涵、方法、应用和趋势[J]. 机械工程学报, 2023, 59(12): 1-16. |
[15] | 罗仕鉴, 龚何波, 林伟. 智能产品交互设计研究现状与进展[J]. 机械工程学报, 2023, 59(11): 1-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||