[1] 李壮云. 液压元件与系统[M]. 北京:机械工业出版社, 2011. LI Zhuangyun. Hydraulic components and systems[M]. Beijing:China Machine Press, 2011. [2] KIM H E, HWANG S S, TAN A C C, et al. Integrated approach for diagnostics and prognostics of HP LNG pump based on health state probability estimation[J]. Journal of Mechanical Science & Technology, 2012, 26(11):3571-3585. [3] ZHAO Rui, YAN Ruiqiang, WANG Jinjiang, et al. Learning to monitor machine health with convolutional Bi-directional LSTM networks[J]. Sensors, 2017, 17(2):273. [4] LI Xiang, DING Qian, SUN Jianqiao. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety, 2018, 172:1-11. [5] ZHAO Rui, YAN Ruiqiang, CHEN Zhenghua, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115:213-237. [6] 吴丹,金敏. 基于容错度自适应支持向量机的液压泵故障诊断[J]. 中国机械工程, 2011, 22(21):2582-2587. WU Dan, JIN Min. Fault diagnosis of hydraulic pump based on fault tolerance adaptive support vector machine[J]. China Mechanical Engineering, 2011, 22(21):2582-2587. [7] 何庆飞,陈桂明,陈小虎,等. 基于改进灰色神经网络的液压泵寿命预测[J]. 中国机械工程, 2013, 24(4):500-506. HE Qingfei, CHEN Guiming, CHEN Xiaohu, et al. Life prediction of hydraulic pump based on improved grey neural network[J]. China Mechanical Engineering, 2013, 24(4):500-506. [8] VM A, VS B, VI C. Fault diagnosis of monoblock centrifugal pump using SVM[J]. Engineering Science and Technology, an International Journal, 2014, 17(3):152-157. [9] GE W. Wear condition prediction of hydraulic pump[J]. Journal of Beijing University of Aeronautics & Astronautics, 2011, 37(11):1410-1414. [10] 裴洪,胡昌华,司小胜,等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8):1-13. PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of residual life prediction method of equipment based on machine learning[J]. Journal of Mechanical Engineering, 2019, 55(8):1-13. [11] BENGIO S, DENG L, LAROCHELLE H, et al. Guest editors' introduction:Special section on learning deep architectures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1795-1797. [12] XIAO D, HUANG Y, WANG H, et al. Health assessment for piston pump using LSTM neural network[C]//2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). 2018, 131-137. [13] BIE F, DU T, LYU F, et al. An integrated approach based on improved CEEMDAN and LSTM deep learning neural network for fault diagnosis of reciprocating pump[J]. IEEE Access, 2021, 9:23301-23310. [14] 魏晓良,潮群,陶建峰,等. 基于LSTM和CNN的高速柱塞泵故障诊断[J]. 航空学报, 2021, 42(3):435-445. WEI Xiaoliang, CHAO Qun, TAO Jianfeng, et al. Cavition fault diagnosis method for highs-speed plunger pumps based on LSTM and CNN[J]. Actac Aeronautica et Astronautica Sinica, 2021, 42(3):435-445. [15] BARALDI P, MANGILI F, ZIO E. Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[J]. Reliability Engineering and System Safety, 2013, 112:94-108. [16] SANKARARAMAN S. Significance, interpretation, and quantification of uncertainty in prognostics and remaining useful life prediction[J]. Mechanical Systems and Signal Processing, 2015, 52(53):228-247. [17] STRAUBT D. Stochastic modeling of deterioration processes through dynamic bayesian networks[J]. Journal of Engineering Mechanics, 2009, 135(10):1089-1099. [18] 罗亦泳,姚宜斌,黄城,等. 基于改进VMD的变形特征提取与分析[J]. 武汉大学学报(信息科学版), 2020, 45(4):612-619. LUO Yiyong, YAO Yibin, HUANG Cheng, et al. Deformation feature extraction and analysis based on improved VMD[J]. Journal of Wuhan University (Information Science Edition), 2020, 45(4):612-619. [19] 张建伟,华薇薇,侯鸽. IVMD对泵站管道振动响应趋势的预测分析[J]. 振动测试与诊断, 2019, 39(3):478-483. ZHANG Jianwei, HUA Weiwei, HOU Ge. Prediction and analysis of ivmd on vibration response trend of pump station pipeline[J]. Journal of Vibration Measurement and Diagnosis, 2019, 39(3):478-483. [20] BLEI D M, KUCUKELBIR A, MCAULIFFE J D. Variational Inference:A review for Statisticians[J]. Journal of the American Statistical Association, 2018, 112(518):859-877. |