[1] 张志宇,王峰,赵耀中,等. 基于低温技术的汽车储氢系统研究综述[J]. 低温与特气, 2020, 38(3):1-8. ZHANG Zhiyu, WANG Feng, ZHAO Yaozhong, et al. Summary of research on automotive Hydrogen storage system based on low temperature technology[J]. Low Temperature and Specialty Gases, 2020, 38(3):1-8. [2] ABE J, POPOOLA A, AJENIFUJA E, et al. Hydrogen energy, economy and storage:Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29):15072-15086. [3] 赵永志,花争立,欧可升,等. 车载低温高压复合储氢技术研究现状与挑战[J]. 太阳能学报, 2013, 34(7):1301-1306. ZHAO Yongzhi, HUA Zhengli, OU Kesheng, et al. Development and challenges of cryo-compressed hydrogen storage technologies for automotive applications[J]. Acta Solar Energy, 2013, 34(7):1301-1306. [4] 欧训民. 氢能制取和储存技术研究发展综述[J]. 能源研究与信息, 2009, 25(1):1-4. OU Xunming. A review on the research and development of hydrogen production and storage technologies[J]. Energy Research and Information, 2009, 25(1):1-4. [5] 徐丽,马光,盛鹏,等. 储氢技术综述及在氢储能中的应用展望[J]. 智能电网, 2016, 4(2):167-171. XU Li, MA Guang, SHENG Peng, et al. Overview of Hydrogen storage technologies and their application prospects in hydrogen-based energy storage[J]. Smart Grid, 2016, 4(2):167-171. [6] 刘雨农,徐展,倪中华,等. 车载深冷高压储供氢过程预测和影响因素研究[J]. 机械工程学报, 2021, 57(6):53-59. LIU Yunong, XU Zhan, NI Zhonghua, et al. Study on prediction and influencing factors of Cryogenic compressed Hydrogen storage and supply process[J]. Journal of Mechanical Engineering, 2021, 57(6):53-59. [7] YAN Y, ZHAO X, XU Z, et al. Loading procedure for testing the cryogenic performance of cryo-compressed vessel for fuel cell vehicles[J]. Applied Thermal Engineering, 2021, 183(2):115798. [8] HWANG H T, VARMA A. Hydrogen storage for fuel cell vehicles[J]. Current Opinion in Chemical Engineering, 2014, 5:42-48. [9] EBERLE U, FELDERHOFF M, SCFUTH F. Current opinion in chemical engineering[J]. Angewandte Chemie, 2009, 48(36):6608-6630. [10] BERRY D, ACEVES S M. Onboard storage alternatives for hydrogen vehicles[J]. Energy & Fuels, 1988, 12(1):49-55. [11] ACEVES S M, MARTINEZ F J, GARCIA V O. Analytical and experimental evaluation of insulated pressure vessels for cryogenic hydrogen storage[J]. International Journal of Hydrogen Energy, 2000, 25(11):1075-1085. [12] MORENO B J, CAMACHO G, VALLADARES F, et al. The cold high-pressure approach to hydrogen delivery[J]. International Journal of Hydrogen Energy, 2020, 45(51):27369-27380. [13] ACEVES S M, ESPINOSA L F, LEDESMA O E, et al. High-density automotive hydrogen storage with cryogenic capable pressure vessels[J]. International Journal of Hydrogen Energy, 2010, 35(3):1219-1226. [14] AHLUWALIA R, HUA T, PENG J. On-board and off-board performance of hydrogen storage options for light-duty vehicles[J]. International Journal of Hydrogen Energy, 2012, 37(3):2891-2910. [15] KUNZE K, KIRCHER O. Cryo-compressed hydrogen storage[R]. Oxford:Oxford University, 2012. [16] NONOBE Y. Development of the fuel cell vehicle mirai[J]. IEEJ Trans, 2017, 12:5-9. [17] KOBAYAHI H, NARUO Y, MARU Y, et al. Experiment of cryo-compressed (90-MPa) hydrogen leakage diffusion[J]. International Journal of Hydrogen Energy, 2018, 43(37):17928-17937. [18] 彭晋卿,武玉,刘华军,等. 50 kA- 10T CICC超导导体测试装置低温系统设计[C]//中国制冷学会2009年学术年会论文集, 2009:1-4. PENG Jinqing, WU Yu, LIU Huajun, et al. The cryogenic system of the 50KA-10T CICC superconducting conductor testing facility[C]//Proceedings of the 2009 Annual Conference of the Chinese Society of Refrigeration, 2009, 1-4. [19] 王国平,肖剑,何昆,等. 散裂中子源低温系统的概念设计[J]. 低温工程, 2009(5):27-30. WANG Guoping, XIAO Jian, HE Kun, et al. Conceptual design of cryogenic system for chilaese spallation neutron source[J]. Cryogenics, 2009(5):27-30. [20] 顾轶卓,张佐光,李敏. 复合材料热压成型过程的树脂压力测试系统[J]. 复合材料学报, 2007, 24(2):23-27. GU Yizuo, ZHANG Zuoguang, LI Min. Resin pressure measuring system for hotpressing process of composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):23-27. |