机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 3-15.doi: 10.3901/JME.2021.16.003
• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇 下一篇
刘利强1,2, 张显程1, 谈建平1, 王润梓1, 涂善东1
收稿日期:
2020-12-15
修回日期:
2021-08-23
出版日期:
2021-08-20
发布日期:
2021-11-16
通讯作者:
张显程(通信作者),男,1979年出生,博士,教授。主要研究方向为机械装备长寿面保障理论与技术。E-mail:xczhang@ecust.edu.cn
作者简介:
刘利强,男,1986年出生,博士研究生。主要研究方向为严苛环境下结构材料测试技术及装备。E-mail:13843155571@139.com;谈建平,男,1986年出生,博士,副教授。主要研究方向为材料性能测试技术。E-mail:jptan@ecust.edu.cn;王润梓,男,1991年出生,博士。主要研究方向为蠕变疲劳寿命设计方法。E-mail:rzwang@ecust.edu.cn;涂善东,男,1961年出生,博士,教授。主要研究方向为高温结构完整性与安全技术。E-mail:sttu@ecust.edu.cn
基金资助:
LIU Liqiang1,2, ZHANG Xiancheng1, TAN Jianping1, WANG Runzi1, TU Shantung1
Received:
2020-12-15
Revised:
2021-08-23
Online:
2021-08-20
Published:
2021-11-16
摘要: 重大工程领域中的高端装备通常在复杂载荷和严苛环境下服役,其中材料性能、多物理场载荷、环境和复杂几何特征等方面的因素给机械结构强度设计和服役安全评估带来了巨大挑战。针对服役环境下材料和结构性能测试问题,开展严苛环境高温力学试验技术研究,从而服务于核电、航空航天和化工能源等领域内关键高温部件的自主设计与制造。高温力学试验技术依赖于高温力学试验装置,我国于20世纪80年代开始大规模研制严苛环境下国产高温力学试验装备。重点阐述了国产严苛环境高温力学试验装备的发展历程,总结论述了严苛环境高温力学试验装备整体技术框架,详细分析严苛环境高温力学试验装备所涉及的4类关键技术,并介绍4类典型严苛环境国产高温力学试验装置及特点,最后对未来突破更加苛刻条件下的材料高温力学试验技术进行展望。
中图分类号:
刘利强, 张显程, 谈建平, 王润梓, 涂善东. 严苛环境高温力学试验技术研究进展[J]. 机械工程学报, 2021, 57(16): 3-15.
LIU Liqiang, ZHANG Xiancheng, TAN Jianping, WANG Runzi, TU Shantung. Research Progress of High Temperature Mechanical Test Technology in Severe Environment[J]. Journal of Mechanical Engineering, 2021, 57(16): 3-15.
[1] 国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告[M]. 北京:科学出版社,2010.National Natural Science Foundation of China Engineering and Materials Science Department. Report on the development strategy of mechanical engineering[M]. Beijing:Science Press,2010. [2] "10000个科学难题" 制造科学编委会. 10000个科学难题制造科学卷[M]. 北京:科学出版社,2018. "10000 Scientific Problems" Manufacturing Science Editorial Board. 10000 Scientific problems manufacturing science volume[M]. Beijing:Science Press,2018. [3] 涂善东. 安全4.0:过程工业装置安全技术展望[J]. 化工进展,2016(6):1646-1651.TU Shantung. Safety 4.0:Prospects of safety technology for process industry installations[J]. Progress in Chemical Industry,2016(6):1646-1651. [4] XU G H,HE W,SHEN R J. Design of temperature testing system in multi-parameter combined environmental test[J]. Applied Mechanics &Materials,2012,157-158:127-131. [5] 邹学锋,郭定文,潘凯,等. 综合载荷环境下高超声速飞行器结构多场联合强度试验技术[J]. 航空学报,2018,39(12):240-250.ZOU Xuefeng,GUO Dingwen,PAN Kai,et al. Multi-field joint strength test technology of hypersonic vehicle structure under combined load environment[J]. Acta Aeronautica Sinica,2018,39(12):240-250. [6] 国家中长期科学和技术发展规划纲要(年). 国家中长期科学和技术发展规划纲要(2006-2020年)[J]. 中国安防,2006(1):1-5.National medium and long-term science and technology development plan outline (year). National medium and long-term science and technology development plan outline (2006-2020)[J]. China Security,2006(1):1-5. [7] 张显程,朱旭旻,谈建平,等. 一种氧分压可控的蠕变疲劳性能测试系统:中国,CN105973693A[P]. 2016-09-28.ZHANG Xiancheng,ZHU Xuwen,TAN Jianping,et al. Creep-fatigue property testing system with controll ableoxy genpartial pressure:China,CN105973693A[P]:2016-09-28. [8] YAN K F,ZHANG C Y,QIAO S R,et al. Failure and strength of 2D-C/SiC composite under in-plane shear loading at elevated temperatures[J]. Materials & Design,2011,32(6):3504-3508. [9] 封伟强,王伟,孟松鹤,等. 基于数字图像相关方法的石墨高温杨氏模量测试[J]. 装备环境工程,2016,13(3):18-24. FENG Weiqiang,WANG Wei,MENG Songhe,et al. Graphite high temperature Young's modulus measurement based on digital image correlation method[J]. Equipment Environmental Engineering,2016,13(3):18-24. [10] CHENGHAI X,XINXING H,GUANGYI C,et al. Experimental study of ultra-high temperature interlaminar tensile strengths of 3D-needled C/C composites using the V-shaped notched specimen compression method[J]. Mechanics of Materials,2018,126(11):26-35. [11] XU C,MENG S,JIN H,et al. Modified double-notched specimen for ultra-high temperatures shear-strength testing of carbon/carbon composites[J]. Journal of the European Ceramic Society,2019,39(15):4654-4663. [12] 刘孝亮,陈学东,王冰,等. 高温氢气环境蠕变持久试验装置的试样均温性控制[J]. 焊接学报,2016,37(5):65-68.LIU Xiaoliang,CHEN Xuedong,WANG Bing,et al. Specimen temperature uniformity control of high temperature hydrogen environment creep endurance test device[J]. Transactions of the China Welding Institution,2016,37(5):65-68. [13] WADSWORTH J,CRABTREE G W,HEMLEV R J. Basic research needs for materials under extreme environments[R]. New York:Basic Energy Sciences Workshop on Materials Under Extreme Environments,2007. [14] 刘孝亮,王冰,范志超,等. 氢气环境材料力学性能测试仪研发概述[J]. 工程与试验,2016,56(1):4-9,17.LIU Xiaoliang,WANG Bing,FAN Zhichao,et al. Overview of research and development of hydrogen environment material mechanical properties tester[J]. Engineering and Testing,2016,56(1):4-9,17. [15] 达道安. 真空设计手册[M]. 北京:国防工业出版社,1991. DA Daoan. Manual of vacuum design[M]. Beijing:National Defense Industry Press,1991. [16] 辛宝森. 高温真空拉伸试验装置[J]. 工程与试验,1972(2):24-38. XIN Baosen. High-temperature vacuum tensile test device[J]. Engineering and Testing,1972(2):24-38. [17] 辛宝森. 2500℃高温真空拉伸炉研究报告[J]. 试验技术与试验机,1981(3):19-34.XIN Baosen. Research report on 2500℃ high-temperature vacuum drawing furnace[J]. Testing Technology and Testing Machine,1981(3):19-34. [18] 马艳艳. 感应加热高温力学试验装置的研制[D]. 大连:大连理工大学,2019. MA Yanyan. Development of induction heating high temperature mechanical test device[D]. Dalian:Dalian University of Technology,2019. [19] ELSTER J L,TRAN T A,BANES A E,et al. High-temperature fiber optic strain sensors in fatigue-loading conditions[J]. Smart Sensing,Processing,and Instrumentation. International Society for Optics and Photonics,1996(2718):20-26. [20] ASHRAF A,MEHMOOD M,JANJUA S A. Study of ultra-high-pacuum properties of carbon-coated stainless steel beam pipes for high-energy particle accelerators[J]. Arabian Journal for Science & Engineering,2019,44(7):6593-6600. [21] 创新设计发展战略研究项目组. 材料创新设计[M]. 杭州:浙江大学出版社,2018. Innovative Design Development Strategy Research Project Group. Material innovative design[M]. Hangzhou:Zhejiang University Press,2018. [22] 吴大方,王岳武,高镇同,等. 1500℃高温氧化环境下C/Si C复合材料结构的热/力联合试验[J]. 复合材料学报,2015,32(4):1083-1091. WU Dafang,WANG Yuewu,GAO Zhentong,et al. Combined thermal/mechanical test of C/Si C composite structure under 1500℃ high temperature oxidation environment[J]. Journal of Composite Materials,2015,32(4):1083-1091. [23] NEUMAN E W,HILMAS G E,FAMRENLA W G,et al. Strength of zirconium diboride to 2300℃[J]. Journal of the American Ceramic Society,2013,96(1):47-50,51. [24] IMAI H,FUJJ K,KUROSAWA T,et al. Changes in young's modulus and electrical conductivity of nuclear grade graphites oxidized with air[J]. Journal of Nuclear Materials,1983,118(2-3):294-302. [25] 杨永芳,刘敏江,田立斌. 聚乙烯/膨胀石墨导电阻燃复合材料的研究[J]. 塑料,2003,32(2):16-18.YANG Yongfang,LIU Minjiang,TIAN Libin. Research on polyethylene/expanded graphite conductive flame retardant composite materials[J]. Plastics,2003,32(2):16-18. [26] SU Xiaoxue,ZHANG Aidong,KUN Yang,et al. Experimental study of the glow discharge characteristics in high vacuum magnetic field[J]. Hydropower and New Energy,2018(2):35-38,64. [27] 罗鸿枢,刘树信. 石墨材料高温拉伸试验的通电加热与非接触测温技术[J]. 宇航材料工艺,1981(2):27-29.LUO Hongshu,LIU Shuxin. Electric heating and non-contact temperature measurement technology for high temperature tensile test of graphite materials[J]. Aerospace Materials Technology,1981(2):27-29. [28] MONTEVERDE F,SAVINO R,FUMO M D,et al. Plasma wind tunnel testing of ultra-high temperature ZrB2-SiC composites under hypersonic re-entry conditions[J]. Journal of The European Ceramic Society,2010,30(11):2313-2321. [29] 孙玉利,李法德,杨玉娥,等. 通电加热系统设计时应注意的几个问题[J]. 包装与食品机械,2004,22(3):15-18.SUN Yuli,LI Fade,YANG Yue,et al. Several issues that should be paid attention to in the design of electric heating system[J]. Packaging and Food Machinery,2004,22(3):15-18. [30] 方秀荣,王俊峰,曹文胜. 基于集肤效应的大直径薄壁弯管感应加热[J]. 油气储运,2017(8):99-104. FANG Xiurong,WANG Junfeng,CAO Wensheng. Induction heating of large diameter thin-walled elbow pipe based on skin effect[J]. Oil & Gas Storage and Transportation,2017(8):99-104. [31] 韩毅,肖瑶,于恩林,等. 钢铁精准化电磁加热技术研究现状和发展趋势[J]. 钢铁,2019(12):7-15.HAN Yi,XIAO Yao,YU Enlin,et al. Research status and development trend of precision electromagnetic heating technology for steel[J]. Iron and Steel,2019(12):7-15. [32] 杨易坤,刘明亮. 感应加热与火焰加热在加氢反应器筒节堆焊预热应用上的对比研究[J]. 经济技术协作信息,2018(5):76.YANG Yikun,LIU Mingliang. Comparative study on the application of induction heating and flame heating in the preheating application of hydrogenation reactor tube section welding[J]. Economic and Technical Cooperation Information,2018(5):76. [33] ZHOU S,LI W,HU P,et al. Ablation behavior of ZrB2-SiC-ZrO2 ceramic composites by means of the oxyacetylene torch[J]. Corrosion Science,2009,51(9):2071-2079. [34] DUTTA R S,JAGANNATH G K,DEY K,et al. Characterization of microstructure and corrosion properties of cold worked Alloy 800[J]. Corrosion Science,2006,48:2711-2772. [35] 郝晓剑,张志杰,周汉昌. 高温测量及其校准技术研究现状与发展趋势[J]. 中北大学学报,2020(1):1-7.HAO Xiaojian,ZHANG Zhijie,ZHOU Hanchang. Research status and development trend of high temperature measurement and calibration technology[J]. Journal of North University of China,2020(1):1-7. [36] GAO Jing,CHEN Feida,TANG Xiaobin,et al. Effects of grain boundary structures on primary radiation damage and radiation-induced segregation in austenitic stainless steel[J]. Journal of Applied Physics,2020,128(10):47-59. [37] YVON P,LE F M,CABET C,et al. Structural materials for next generation nuclear systems:challenges and the path forward[J]. Nuclear Engineering and Design,2015. 294(10):161-169. [38] 马树明. 导电陶瓷超高温力学特性测试系统的研制及热冲击实验[D]. 重庆:重庆大学,2015. MA Shuming. Development and thermal shock experiment of ultra-high temperature mechanical properties test system for conductive ceramics[D]. Chongqing:Chongqing University,2015. [39] SCHMIDT S,BEYER S,IMMICH H,et al. Ceramic matrix composites:A challenge in space-propulsion technology applications[J]. International Journal of Applied Ceramic Technology,2005,2(2):85-96. [40] KU H,WANG H,PATTARACHAIYAKOOP N,et al. A review on the tensile properties of natural fiber reinforced polymer composites[J]. Composites Part B-engineering,2011,42(4):856-873. [41] 鲁帅. 双轴拉伸原位力学测试装置的设计分析与试验研究[D]. 长春:吉林大学,2015. LU Shuai. Design analysis and experimental research of biaxial tensile in-situ mechanical testing device[D]. Changchun:Jilin University,2015. [42] BANERJEE D,CHEN X,LOBANOY S S,et al. Iodine adsorption in metal organic frameworks in the presence of humidity[J]. ACS Applied Materials & Interfaces,2018. 10(13):10622-10626. [43] GOGIA A,DAS P,MANDAL S K. Tunable strategies involving flexibility and angularity of dual linkers for a 3D metal-organic framework capable of multimedia iodine capture[J]. Acsapplied Materials & Interfaces,2020,12(41):46107-46118. [44] MAKOWSKI P,DESCHANELS X,GRANDJEAN A,et al. Mesoporous materials in the field of nuclear industry:Applications and perspectives[J]. New Journal of Chemistry,2012,36(3):531-541. [45] ZHANG Pengbo,LI Yonggang,ZHAO Jijun,et al. Materials selection for nuclear applications in view of divacancy energies by comprehensive first-principles calculations[J]. Journal of Nuclear Materials,2020. 538(152253):37-49. [46] EZEKIEL H M. Electrical resistivity and young's modulus of graphite fibers[J]. Journal of Applied Physics,1970,41(13):5351-5352. [47] MROZ A,MANIA R J. The complex influence of aluminium aging on the dynamic response of the thin-walled Al-6060 alloy profile[J]. Thin-walled Structures,2014,79:147-153. [48] MALMSTROM C,KEEN R,GREEN L,et al. Some Mechanical Properties of Graphite at Elevated Temperatures[J]. Journal of Applied Physics,1951,22(5):593-600. [49] SHE S,LANDES J D. Statistical analysis of fracture in graphite[J]. International Journal of Fracture,1993,63(2):189-200. [50] 路智敏. 压力容器壳体的可靠性设计及在固体火箭发动机壳体上的应用[D]. 北京:北京交通大学,2009. LU Zhimin. Reliability design of pressure vessel shell and its application in solid rocket motor shell[D]. Beijing:Beijing Jiaotong University,2009. [51] POLICELLA H,PACOU D. Test rig for tension-torsion at high temperature[J]. Recherche Aerospatiale,1988(4):39-49. [52] LI X,ZHANG X,HAN J,et al. A technique for ultrahigh temperature oxidation studies of ZrB2-SiC[J]. Materials Letters,2008,62(17):2848-2850. [53] LARACURAIO E,STERNSTEIN S S. A high-temperature fibre testing facility[J]. Measurement Science and Technology,1991,2(4):358-368. [54] VOLKL R,FREUND D,FISCHER B,et al. Economical creep testing of ultrahigh-temperature alloys[J]. Journal of Testing and Evaluation,2003,31(1):35-43. [55] KARLSDOTTIR S N,HALLORAN J W. Rapid oxidation characterization of ultra-High temperature ceramics[J]. Journal of the American Ceramic Society,2007,90(10):3233-3238. [56] 刘超,刘蜜,丁成波.基于LabVIEW的继电器簧片压力采集系统[J]. 电子器件,2019,42(5):1335-1339. LIU Chao,LIU Mi,DING Chengbo. Relay reed pressure acquisition system based on LabVIEW[J]. Electronic Devices,2019,42(5):1335-1339. [57] SHUGART K,OPILA E J. SiC depletion in ZrB2-30 vol% SiC at ultrahigh temperatures[J]. Journal of the American Ceramic Society,2015,98(5):1673-1683. [58] GANGIREDDY S,HALLORAN J W,WING Z N,et al. Non-contact mechanical propertymeasurements at ultrahigh temperatures[J]. Journal of The European Ceramic Society,2010,30(11):2183-2189. [59] GANGIREDDY S,HALLORAN J W,WING Z N,et al. Flexural creep of zirconium diboride-silicon carbide up to 2200℃ in minutes with non-contact electromagnetic testing[J]. Journal of The European Ceramic Society,2013,33(15):2901-2908. [60] KIM K,YOO C H. Ultimate strengths of steel rectangular box beams subjected to combined action of bending and torsion[J]. Engineering Structures,2008,30(6):1677-1687. [61] HU S W,CHEN L. Test analysis on prestressed concrete composite beams with steel boxessubjected to torsion and combined flexure and torsion[J]. Science China Technological Sciences,2012,55:3302-3310. [62] MENG S,QI F,CHEN H,et al. The repeated thermal shock behaviors of a ZrB2-SiC composite heated by electric resistance method[J]. International Journal of Refractory Metals & Hard Materials,2011,29(1):44-48 [63] NEUMAN E W,HILMAS G E,FAHRENHOLTZ W G. Strength of zirconium diboride to 2300℃[J]. Journal of the American Ceramic Society,2013,96(1):47-50. [64] HABOUB A,BALE H A,NASIATKA J R,et al. Tensile testing of materials at high temperatures above 1700℃with in situ synchrotron X-ray micro-tomography[J]. Review of Scientific Instruments,2014,85(8):83702. [65] GANGIREDDY S,HALLORAN J W,WING Z N. Flexural creep of zirconium diboride-silicon carbide up to 2200℃ in minutes with non-contact electromagnetic testing[J]. Journal of the European Ceramic Society,2013,33(15-16):2901-2908. [66] 武保华,刘春立,张涛,等.碳/碳复合材料超高温力学性能测试研究[J]. 宇航材料工艺,2001(6):67-71.WU Baohua,LIU Chunli,ZHANG Tao,et al. Research on ultra-high temperature mechanical properties of carbon/carbon composites[J]. Aerospace Materials Technology,2001(6):67-71. [67] CHENG X,QU Z,HE R,et al. An ultra-high temperature testing instrument under oxidation environment up to 1800℃[J]. Review of Scientific Instruments,2016,87(4):45108. [68] 刘仁家.真空热处理炉设计[M]. 北京:第七机械工业部技术局,1979.LIU Renjia. Design of vacuum heat treatment furnace[M]. Beijing:the Technical Bureau of the Seventh Ministry of Machinery Industry. 1979. [69] 王天泉.电阻炉设计[M]. 北京:航空工业出版社.2000.WANG Tianquan. Resistance furnace design[M]. Beijing:Aviation Industry Press. 2000. [70] 钱家麟.管式加热炉[M]. 北京:烃加工出版社,1987.QIAN Jialin. Tubular heating furnace[M]. Beijing:Hydrocarbon Processing Press. 1987. [71] 张兴中,黄文,刘庆国.传热学[M]. 北京:国防工业出版社,2011.ZHANG Xingzhong,HUANG Wen,LIU Qingguo. Heat transfer[M]. Beijing:National Defense Industry Press, 2011. [72] ZHAO Langlang,WEI Shitong,GAO Dianbao,et al. Effect of carbon content on the creep rupture properties and microstructure of 316h weld metals[J]. Acta Metallurgica Sinica,2021(7):986-996. [73] SAHO,GOYALI P,LAH A. Effect of notch depth on creep rupture behaviour of 304HCu austenitic stainless steel[J]. Materials at High Temperatures,2020,37(5):295-304. [74] LEE J H,MAHENDRAN M,MAKEAINEN P,et al. Prediction of mechanical properties of light gauge steels at elevated temperatures[J]. Journal of Constructional Steel Research,2003,59(12):1517-1532. [75] CODRINGTON J,NGUYEN P,HO S Y,et al. Induction heating apparatus for high temperature testing of thermo-mechanical properties[J]. Applied Thermal Engineering,2009,29(14):2783-2789. [76] VOLKL R,FISCHER B. Mechanical testing of ultra-high temperature alloys[J]. Experimental Mechanics,2004,44(2):121-127. [77] NOVAK M,ZOK F W. High-temperature materials testing with full-field strain measurement:Experimental design and practice[J]. Review of Scientific Instruments,2011,82(11):115101. [78] LEI J,CASTELLA M G,ANDROJNA D,et al. Comparison testings between two high-temperature Strain measurement systems[J]. Experimental Mechanics,1996,36(4):430-435. [79] CARROLL D F,WIEDERHORN S M,ROBERTS D E,et al. Technique for tensile creep testing of ceramics[J]. Journal of the American Ceramic Society,1989,72(9):1610-1614. [80] CHENG X,QU Z,HE R,et al. An ultra-high temperature testing instrument under oxidation environment up to 1800℃[J]. Review of Scientific Instruments,2016,87(4):045108. [81] MONTEVERDE F,SAVINO R. Stability of ultra-high-temperature Zr B2-Si C ceramics under simulated atmospheric re-entry conditions[J]. Journal of The European Ceramic Society,2007,27(16):4797-4805. [82] POLICELLA H,PACOU D. Test rig for tension-torsion at high temperature[J]. Recherche Aerospatiale,1988(4):39-49. [83] LI X,ZHANG X,HAN J,et al. A technique for ultrahigh temperature oxidation studies of Zr B2-Si C[J]. Materials Letters,2008,62(17):2848-2850. [84] LARACURZIO E,STERNSTEIN S S. A high-temperature fibre testing facility[J]. Measurement Science and Technology,1991,2(4):358-368. [85] VOLKL R,FREUND D,FISCHER B,et al. Economical creep testing of ultrahigh-temperature alloys[J]. Journal of Testing and Evaluation,2003,31(1):35-43. [86] KARLSDOTTIR S N,HALLORAN J W. Rapid oxidation characterization of ultra-High temperature ceramics[J]. Journal of the American Ceramic Society,2007,90(10):3233-3238. [87] SHUGART K,OPILA E J. Si C depletion in Zr B2-30 vol% Si C at ultrahigh temperatures[J]. Journal of the American Ceramic Society,2015,98(5):1673-1683. [88] 柴宏宇. (Ti Bw+(Ti,Zr)_5Si_3)/TA15复合材料蠕变及持久性能研究[D]. 哈尔滨:哈尔滨工业大学,2019. CHAI Hongyu. (Ti Bw+(Ti,Zr)_5Si_3)/TA15 Composite Material Creep and Durability Research[D]. Harbin:Harbin Institute of Technology,2019. [89] GANGIREDDY S,HALLORAN J W,WING Z N,et al. Non-contact mechanical property measurements at ultrahigh temperatures[J]. Journal of The European Ceramic Society,2010,30(11):2183-2189. [90] GANGIREDDY S,HALLORAN J W,WING Z N,et al. Flexural creep of zirconium diboride-silicon carbide up to 2200℃ in minutes with non-contact electromagnetic testing[J]. Journal of The European Ceramic Society,2013,33(15):2901-2908. [91] MENG S,QI F,ChEN H,et al. The repeated thermal shock behaviors of a ZrB2-SiC composite heated by electric resistance method[J]. International Journal of Refractory Metals & Hard Materials,2011,29(1):44-48. [92] ANWANDER M,ZAGAR B G,WEISS B,et al. Noncontacting strain measurements at high temperatures by the digital laser speckle technique[J]. Experimental Mechanics,2000,40(1):98-105. [93] 庄法坤. 基于梁弯曲的小试样蠕变试验方法研究[D]. 上海:华东理工大学,2014.ZHUANG Fakun. Research on creep test method of small specimen based on beam bending[D]. Shanghai:East China University of Science and Technology,2014. [94] ZHUANG Faku,TU Shantung,ZHOU,Guoyan,et al. A small cantilever beam test for determination of creep properties of materials[J]. Fatigue & Fracture of Engineering Materials & Structures,2014,38(3):257-267. [95] 庄法坤,涂善东,周帼彦,等. 不同小试样测量蠕变性能的比较研究[J]. 机械工程学报,2015,51(6):9-18.ZHUANG Fakun,TU Shantung,ZHOU Yanyan,et al. Comparative study on the measurement of creep properties of different small specimens[J]. Journal of Mechanical Engineering,2015,51(6):9-18. [96] ZHUANG Fakun,TU Shantung,ZHOU Guoyan,et al. Assessment of creep constitutive properties from three-point bending creep test with miniaturized specimens[J]. The Journal of Strain Analysis for Engineering Design,2014,49(7):482-491. [97] GALVAREZ M,OLMEDO M,VILLEGAS K. Corrosion behaviour of alloy 800 in high temperature aqueous solutions:long term autoclave studies[J]. Journal of Nulear Materials 1996,229:93-101. [98] 王美玲,尹佳,陆永浩,等. 一种高温水蒸气环境蠕变持久试验机:中国,208366745U[P]. 2019-01-11. WANGM Meiling,YIN Jia,LU Yonghao,et al. High temperature water vapor environment creep and stress rupture test machine:China,208366745U[P]. 2019-01-11. |
[1] | 姜云禄, 陈静, 阚盈, 吴昌忠, 陈怀宁. 310S不锈钢焊接接头高温力学性能及组织演变[J]. 机械工程学报, 2024, 60(12): 250-258. |
[2] | 赵久成, 赵宏伟. 材料多轴疲劳试验技术的发展与展望[J]. 机械工程学报, 2023, 59(20): 179-197. |
[3] | 韩锋, 赵晓航, 苏玉磊, 汪冬冬, 严岩, 倪中华. 面向氢能装备的深冷高压试验平台研究[J]. 机械工程学报, 2023, 59(16): 390-396. |
[4] | 武永红, 李永堂, 齐会萍, 付建华. 基于铸辗连续成形的42CrMo铸造环坯高温力学性能及临界应变计算*[J]. 机械工程学报, 2017, 53(6): 45-52. |
[5] | 张劲;李炜;张士诚. 封隔器超弹性胶筒力学性能的试验研究[J]. , 2011, 47(8): 71-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||