机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 179-197.doi: 10.3901/JME.2023.20.179
赵久成1,2, 赵宏伟1,2
收稿日期:
2023-05-30
修回日期:
2023-08-06
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
赵宏伟(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为精密仪器设计制造、仿生精密驱动、超精密加工技术及装备等。E-mail:hwzhao@jlu.edu.cn
作者简介:
赵久成,男,1996年出生,博士研究生。主要研究方向为金属材料多轴疲劳仪器研制,航发叶片材料超高周疲劳行为,航发叶片材料力场/能场辅助延寿工艺。E-mail:zhaojc20@mails.jlu.edu.cn
基金资助:
ZHAO Jiucheng1,2, ZHAO Hongwei1,2
Received:
2023-05-30
Revised:
2023-08-06
Online:
2023-10-20
Published:
2023-12-08
摘要: 在航空航天、核工业、海洋工程和轨道交通等核心领域,诸多关键结构件材料复杂服役工况下的疲劳测试需求促进了多轴疲劳试验技术的不断发展。首先回顾传统多轴疲劳试验技术的发展,包含拉伸-扭转、弯曲-扭转、拉伸-弯曲、双轴拉伸、双轴弯曲和拉伸-弯曲-扭转。随后,回顾近十年来新发展的多轴超声疲劳试验技术,包含双轴拉伸、双轴弯曲、拉伸扭转和拉伸-弯曲。此外,总结超声疲劳测试中的应力评估、试样冷却、频率效应和尺寸效应等关键问题,并给出了相应的解决措施。最后,简要介绍上述多轴疲劳试验技术在典型材料钛合金和镍基高温合金中的应用。在总结归纳的基础上,提出材料多轴疲劳试验技术的发展方向,指出该领域未来发展的新机遇。
中图分类号:
赵久成, 赵宏伟. 材料多轴疲劳试验技术的发展与展望[J]. 机械工程学报, 2023, 59(20): 179-197.
ZHAO Jiucheng, ZHAO Hongwei. Development and Prospect of Multi-axial Fatigue Test Technology of Materials[J]. Journal of Mechanical Engineering, 2023, 59(20): 179-197.
[1] KHASHABA U A,SEIF M A. Effect of different loading conditions on the mechanical behavior of 0/+/-45/90 s woven composites[J]. Composite Structures,2006,74(4):440-448. [2] KHOSHBAKHT M,CHOWDHURY S J,SEIF M A,et al. Failure of woven composites under combined tension-bending loading[J]. Composite Structures,2009,90(3):279-286. [3] MURRI G B,O'BRIEN T K,ROUSSEAU C Q. Fatigue life methodology for tapered composite flexbeam laminates[J]. Journal of the American Helicopter Society,1998,43(2):146-155. [4] MURRI G B,SCHAFF J R. Fatigue life methodology for tapered hybrid composite flexbeams[J]. Composites Science and Technology,2006,66(3-4):499-508. [5] ZHU Z,ZHU Y,WANG Q. Fatigue mechanisms of wheel rim steel under off-axis loading[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2020,773:138731. [6] GONG S F,YUAN L,JIN W L. Buckling response of offshore pipelines under combined tension,bending,and external pressure[J]. Journal of Zhejiang University-SCIENCE A,2011,12(8):627-636. [7] KRISTOFFERSEN M,LANGSETH M,BORVIK T. Combined three-point bending and axial tension of pressurised and unpressurised X65 offshore steel pipes - Experiments and Cluck tot simulations[J]. Marine Structures,2018,61:560-577. [8] SANEIAN M,HAN P,JIN S,et al. Fracture response of steel pipelines under combined tension and bending[J]. Thin-Walled Structures,2020,155:106987. [9] COWLES B. High cycle fatigue in aircraft gas turbines—an industry perspective[J]. International Journal of Fracture,1996,80:147-163. [10] HEULER P,BIRK O. Durability assessment of automotive aluminium parts[J]. Fatigue & Fracture of Engineering Materials & Structures,2002,25(12):1135-1148. [11] SHANYAVSKIY A A. Very-high-cycle-fatigue of in-service air-engine blades,compressor and turbine[J]. Science China-Physics Mechanics & Astronomy,2014,57(1):19-29. [12] VIEIRA M,REIS L,FREITAS M,et al. Strain measurements on specimens subjected to biaxial ultrasonic fatigue testing[J]. Theoretical and Applied Fracture Mechanics,2016,85:2-8. [13] MONTALVAO D,WREN A. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines[J]. Heliyon,2017,3(11):e00466-e00466. [14] BRUGGER C,PALIN-LUC T,OSMOND P,et al. A new ultrasonic fatigue testing device for biaxial bending in the gigacycle regime[J]. International Journal of Fatigue,2017,100:619-626. [15] BAO X,CHENG L,DING J,et al. The effect of microstructure and axial tension on three-point bending fatigue behavior of TC4 in high cycle and very high cycle regimes[J]. Materials,2020,13(1):68. [16] ZHAO J,ZHANG S,WAN J,et al. Development of in situ fatigue performance testing apparatus for materials under coupling conditions of high-temperature and combined mechanical loads[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:6012014. [17] 宁祚良,陈刚,陈旭. 多轴试验测试技术的发展与应用[J]. 机械工程学报,2021,57(16):16-36. NING Zuoliang,CHEN Gang,CHEN Xu. Development and application of multiaxial testing technique[J]. Journal of Mechanical Engineering,2021,57(16):16-36. [18] 孙国芹,尚德广,王杨. 金属多轴疲劳行为与寿命预测研究进展[J]. 机械工程学报,2021,57(16):153-172. SUN Guoqin,SHANG Deguang,WANG Yang. Research progress on fatigue behavior and life prediction under multiaxial loading for metals[J]. Journal of Mechanical Engineering,2021,57(16):153-172. [19] 尚德广,王德俊. 多轴疲劳强度[M]. 北京:科学出版社,2007. SHANG Deguang,WANG Dejun. Multiaxial fatigue strength[M]. Beijing:Science Press,2007. [20] GOUGH H J,POLLARD H. The strength of metals under combined alternating stresses[J]. Proceedings of the Institution of Mechanical Engineers,1935,131(1):3-103. [21] BLASS J,ZAMRIK S. Multiaxial low-cycle fatigue of type 304 stainless steel[J]. Creep-Fatigue Interaction ASME,1976:129-159. [22] FU S,WANG L,CHEN G,et al. A tension-torsional fatigue testing apparatus for micro-scale components[J]. Review of Scientific Instruments,2016,87(1):015111. [23] LIU C,ZHAO H,MA Z,et al. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions[J]. Review of Scientific Instruments,2018,89(2):025112. [24] HOU P,ZHOU H,WANG F,et al. In situ monitoring the properties of 20 carbon steel and ductile iron under combined tension and three-point bending loadings[J]. Journal of Alloys and Compounds,2017,713:204-211. [25] 李聪. 复杂工况材料力学性能原位测试装备设计与试验研究[D]. 长春:吉林大学,2020. LI Cong. Design and research of in-situ testing equipment for mechanical performance of materials under complex working conditions[D]. Changchun:Jilin University,2020. [26] LIU C,MA Z,ZHOU L,et al. Correction method for mechanical performance testing instrument with tension–torsion coupling loading[J]. Measurement Science and Technology,2018,29(10):105901. [27] GOANTA V. Extensometer for determining strains on a tensile and torsion simultaneous load[J]. Sensors,2020,20(2):385. [28] DOWNING S D,GALLIART D R. A fatigue test system for a notched shaft in combined bending and torsion[M]//Multiaxial Fatigue. Conshohocken,PA:ASTM International,1985:24-32. [29] PARK J,NELSON D V. In-phase and out-of-phase combined bending-torsion fatigue of a notched specimen[J]. ASTM Special Technical Publication,2000,1387:246-265. [30] GÜLER B,EFE M. Forming and fracture limits of sheet metals deforming without a local neck[J]. Journal of Materials Processing Technology,2018,252:477-484. [31] FERRON G,MAKINDE A. Design and development of a biaxial strength testing device[J]. Journal of Testing Evaluation,1988,16:253-256. [32] LIN Q,SHI S,WANG L,et al. In-plane biaxial cyclic mechanical behavior of proton exchange membranes[J]. Journal of Power Sources,2017,360:495-503. [33] XIAO R,LI X X,LANG L H,et al. Biaxial tensile testing of cruciform slim superalloy at elevated temperatures[J]. Materials & Design,2016,94:286-294. [34] CHEN J,ZHANG J,ZHAO H. Development and experimental verification of a high-temperature and in-plane biaxial testing apparatus[J]. Machines,2022,10(11):1054. [35] 鲁帅. 双轴拉伸原位力学测试装置的设计分析与试验研究[D]. 长春:吉林大学,2015. LU Shuai. Design analysis and experimental research of an in-situ biaxial tensile device for characterizing mechanics of materials[D]. Changchun:Jilin University,2015. [36] CHEN J,ZHANG J,ZHAO H. Quantifying alignment deviations for uniaxial material mechanical testing via automated machine learning[J/OL]. Mechanics of Advanced Materials and Structures,2022[2022-10-29]. https://www.tandfonline.com/doi/abs/10.1080/15376494.2022.2128122?journalCode=umcm20. [37] CHEN J,ZHANG J,ZHAO H. Quantifying alignment deviations for the in-plane biaxial test system via a shape-optimised cruciform specimen[J]. Materials,2022,15(14):4949. [38] SHIRATORI E,IKEGAMI K. Experimental study of the subsequent yield surface by using cross-shaped specimens[J]. Journal of the Mechanics and Physics of Solids,1968,16(6):373-394. [39] OHTAKE Y,ROKUGAWA S,MASUMOTO H. Geometry determination of cruciform-type specimen and biaxial tensile test of C/C composites[J]. Key Engineering Materials,1999,164:151-154. [40] KREIßIG R,SCHINDLER J. Some experimental results on yield condition in plane stress state[J]. Acta Mechanica,1987,65(1-4):169-179. [41] MüLLER W,PöHLANDT K. New experiments for determining yield loci of sheet metal[J]. Journal of Materials Processing Technology,1996,60(1-4):643-648. [42] YU Y,WAN M,WU X D,et al. Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM[J]. Journal of Materials Processing Technology,2002,123(1):67-70. [43] LAMKANFI E,VAN PAEPEGEM W,DEGRIECK J,et al. Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 2:Influence of geometrical discontinuities[J]. Polymer Testing,2010,29(1):132-138. [44] LAMKANFI E,VAN PAEPEGEM W,DEGRIECK J,et al. Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 1:Two-dimensional versus three-dimensional finite element model[J]. Polymer Testing,2010,29(1):7-13. [45] KUWABARA T,IKEDA S,KURODA K. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension[J]. Journal of Materials Processing Technology,1998,80:517-523. [46] WU X D,WAN M,ZHOU X B. Biaxial tensile testing of cruciform specimen under complex loading[J]. Journal of Materials Processing Technology,2005,168(1):181-183. [47] LIN S,DING J. Experimental study of the plastic yielding of rolled sheet metals with the cruciform plate specimen[J]. International Journal of Plasticity,1995,11(5):583-604. [48] GOZZI J,OLSSON A,LAGERQVIST O. Experimental investigation of the behavior of extra high strength steel[J]. Experimental Mechanics,2005,45:533-540. [49] MAKINDE A,THIBODEAU L,NEALE K. Development of an apparatus for biaxial testing using cruciform specimens[J]. Experimental Mechanics,1992,32:138-144. [50] GEORGE T J,SEIDT J,SHEN M H H,et al. Development of a novel vibration-based fatigue testing methodology[J]. International Journal of Fatigue,2004,26(5):477-486. [51] BRUNS J,ZEARLEY A,GEORGE T,et al. Vibration-based bending fatigue of a hybrid insert-plate system[J]. Experimental Mechanics,2015,55(6):1067-1080. [52] CESNIK M,SLAVIC J,BOLTEZAR M. Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping[J]. Journal of Sound and Vibration,2012,331(24):5370-5382. [53] XU W,YANG X,ZHONG B,et al. Multiaxial fatigue investigation of titanium alloy annular discs by a vibration-based fatigue test[J]. International Journal of Fatigue,2017,95:29-37. [54] HILL B D. Calibration Procedure for DIC Strain Measurements during Vibration-Based Fatigue Testing [D]. Utah State:Utah State University,2022. [55] WOZNEY G. Resonant-vibration fatigue testing[J]. Experimental Mechanics,1962,2:1-8. [56] FRENCH R. Mechanical evaluation of gas-turbine blades in their actual centrifugal field:Dynamic blade-test method found to be a valuable tool in both fatigue and vibration testing of rotor blades[J]. Experimental Mechanics,1962,2:122-128. [57] VILLASANTE M. Predictive methods for combined cycle fatigue in gas turbine blades[J]. Aerodays,Madrid,2011,30:1-8. [58] 马楠楠,陶春虎,何玉怀,等. 航空发动机叶片多轴疲劳试验研究进展[J]. 航空材料学报,2012(6):44-49. MA Nannan,TAO Chunhu,HE Yuhuai,et al. Research progress of multiaxial fatigue test methods on blades of aviation engine[J]. Journal of Aeronautical Materials,2012(6):44-49. [59] HU D,MENG F,LIU H,et al. Experimental investigation of fatigue crack growth behavior of GH2036 under combined high and low cycle fatigue[J]. International Journal of Fatigue,2016,85:1-10. [60] HU D,YANG Q,LIU H,et al. Crack closure effect and crack growth behavior in GH2036 superalloy plates under combined high and low cycle fatigue[J]. International Journal of Fatigue,2017,95:90-103. [61] LI Z,XU H,SHI D,et al. Combined tensile and bending fatigue behavior and failure mechanism of a blade-like specimen at elevated temperature[J]. International Journal of Fatigue,2022,164:107163. [62] HAN L,WANG Y,ZHANG Y,et al. Competitive cracking behavior and microscopic mechanism of Ni-based superalloy blade respecting accelerated CCF failure[J]. International Journal of Fatigue,2021,150:106306. [63] HAN L,HUANG D,YAN X,et al. Combined high and low cycle fatigue life prediction model based on damage mechanics and its application in determining the aluminized location of turbine blade[J]. International Journal of Fatigue,2019,127:120-130. [64] DING X,HUANG D,YAN X,et al. Effect of pneumatic shot peening on the high and low cycle combined fatigue life of K403 turbine blades[J]. Fatigue & Fracture of Engineering Materials & Structures,2021,44(6):1439-1454. [65] ZHAO J,WANG K,REN Z,et al. A novel composite deformation measurement method of materials under coupling of high-temperature and hybrid tensile-flexural loads[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1003811. [66] WANG K,ZHANG S,WANG Y,et al. Multifunctional in-situ testing device for investigating the service performance of materials[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:6002219. [67] 李柠. 接近服役条件材料力学性能原位测试装置设计分析与试验研究[D]. 长春:吉林大学,2017. LI Ning. Development of in-situ testing instrument and experimental research of mechnaical property close to service condition[D]. Changchun:Jilin University,2017. [68] BATHIAS C,PARIS P C. Gigacycle fatigue in mechanical practice[M]. Florida:CRC Press,2004. [69] BAPTISTA R,CLAUDIO R A,REIS L,et al. Optimization of cruciform specimens for biaxial fatigue loading with direct multi search[J]. Theoretical and Applied Fracture Mechanics,2015,80:65-72. [70] BAPTISTA R,CLáUDIO R,REIS L,et al. Design optimization of cruciform specimens for biaxial fatigue loading[C/CD]//Proceedings of the The First Multi-Lateral Workshop on Fracture and Structural Integrity Related Issues,2014. [71] COSTA P R,MONTALVAO D,FREITAS M,et al. Cruciform specimens' experimental analysis in ultrasonic fatigue testing[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(11):2496-2508. [72] DA COSTA P R,REIS L,MONTALVAO D,et al. A new method for ultrasonic fatigue testing of equibiaxial and pure shear cruciform specimens[J]. International Journal of Fatigue,2021,152:106423. [73] NWAWE R,GRASSO M,CHEN Y,et al. Optimisation of a gigacycle biaxial fatigue specimen for ultrasonic testing[C]//Proceedings of Abstracts Engineering and Computer Science Research Conference,2019:8-10. [74] BELLETT D,MOREL F,MOREL A,et al. A biaxial fatigue specimen for uniaxial loading[J]. Strain,2011,47(3):227-240. [75] VIEIRA M,DE FREITAS M,REIS L,et al. Development of a very high cycle fatigue (VHCF) multiaxial testing device[J]. Frattura ed Integrita Strutturale,2016,10(37):131-137. [76] MAYER H. Ultrasonic torsion and tension-compression fatigue testing:Measuring principles and investigations on 2024-T351 aluminium alloy[J]. International Journal of Fatigue,2006,28(11):1446-1455. [77] MAYER H,SCHULLER R,KARR U,et al. Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios[J]. International Journal of Fatigue,2015,70:322-327. [78] MAYER H,SCHULLER R,KARR U,et al. Mean stress sensitivity and crack initiation mechanisms of spring steel for torsional and axial VHCF loading[J]. International Journal of Fatigue,2016,93:309-317. [79] KARR U,SCHOENBAUER B,FITZKA M,et al. Inclusion initiated fracture under cyclic torsion very high cycle fatigue at different load ratios[J]. International Journal of Fatigue,2019,122:199-207. [80] DA COSTA P R,SOARES H,REIS L,et al. Ultrasonic fatigue testing under multiaxial loading on a railway steel[J]. International Journal of Fatigue,2020,136:105581. [81] WANG B,CHENG L,CUI W,et al. Effect of forging process on high cycle and very high cycle fatigue properties of TC4 titanium alloy under three-point bending[J]. Fatigue & Fracture of Engineering Materials & Structures,2021,44(8):2054-2069. [82] XUE H Q,TAO H,MONTERNBAULT F,et al. Development of a three-point bending fatigue testing methodology at 20 kHz frequency[J]. International Journal of Fatigue,2007,29(9-11):2085-2093. [83] WANG B,CHENG L,DING J,et al. Effects of geometric parameters and axial tension on vibration characteristics[J]. Journal of Physics Conference Series,2020,1637(1):012049. [84] JIAO S,GAO C,CHENG L,et al. A very high-cycle fatigue test and fatigue properties of TC17 titanium alloy[J]. Journal of Materials Engineering and Performance,2016,25(3):1085-1093. [85] 彭文杰,吴圣川,薛欢,等. 超声疲劳试样动态应变测量及应力检定方法[J]. 机械科学与技术,2023,42(2):287-293. PENG Wenjie,WU Shengchuan,XUE Huan,et al. Measurement approach of dynamic strain and stress calibration for ultrasonic fatigue specimen[J]. Mechanical Science and Technology for Aerospace Engineering,2023,42(2):287-293. [86] ORS T,RANC N,PELERIN M,et al. Microsecond time-resolved X-ray diffraction for the investigation of fatigue behavior during ultrasonic fatigue loading[J]. Journal of Synchrotron Radiation,2019,26:1660-1670. [87] HEINZ S,BALLE F,WAGNER G,et al. Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry[J]. Ultrasonics,2013,53(8):1433-1440. [88] YI J Z,TORBET C J,FENG Q,et al. Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000 degrees C[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,443(1-2):142-149. [89] FURUYA Y,KOBAYASHI K,HAYAKAWA M,et al. High-temperature ultrasonic fatigue testing at 1000℃[J]. Advanced Materials Research,2014,891-892:1413-1418. [90] ZHAO Z,ZHANG F,DONG C,et al. Initiation and early-stage growth of internal fatigue cracking under very-high-cycle fatigue regime at high temperature[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2020,51(4):1575-1592. [91] CERVELLON A,CORMIER J,MAUGET F,et al. VHCF life evolution after microstructure degradation of a Ni-based single crystal superalloy[J]. International Journal of Fatigue,2017,104:251-262. [92] GEATHERS J,TORBET C J,JONES J W,et al. Investigating environmental effects on small fatigue crack growth in Ti-6242S using combined ultrasonic fatigue and scanning electron microscopy[J]. International Journal of Fatigue,2015,70:154-162. [93] HOLPER B,MAYER H,VASUDEVAN A,et al. Near threshold fatigue crack growth at positive load ratio in aluminium alloys at low and ultrasonic frequency:influences of strain rate,slip behaviour and air humidity[J]. International Journal of Fatigue,2004,26(1):27-38. [94] SONG Y N,WANG H D,XU B S,et al. Effect of fretting wear on very high cycle bending fatigue behaviors of FV520B steel[J]. Tribology International,2016,103:132-138. [95] PETIT J,JIANG Z,POLIT O,et al. Optimisation of an ultrasonic torsion fatigue system for high strength materials[J]. International Journal of Fatigue,2021,151:106395. [96] DING J,CHENG L. Experimental study on ultrasonic three-point bending fatigue of CFRP under ultraviolet radiation[J]. Engineering Fracture Mechanics,2021,242:107435. [97] LEE C S,KIM H J,AMANOV A,et al. Investigation on very high cycle fatigue of PA66-GF30 GFRP based on fiber orientation[J]. Composites Science and Technology,2019,180:94-100. [98] BACH J,HOEPPEL H W,BITZEK E,et al. Influence of specimen geometry on temperature increase during ultrasonic fatigue testing[J]. Ultrasonics,2013,53(8):1412-1416. [99] BACKE D,BALLE F,EIFLER D. Fatigue testing of CFRP in the Very High Cycle Fatigue (VHCF) regime at ultrasonic frequencies[J]. Composites Science and Technology,2015,106:93-99. [100] WAN J,ZHAO J,ZHOU L,et al. A novel methodology for bending ultrasonic fatigue testing in the VHCF regime[J]. International Journal of Fatigue,2023,170:107562. [101] SHABANI P,TAHERI-BEHROOZ F,SAMAREH- MOUSAVI S S,et al. Very high cycle and gigacycle fatigue of fiber-reinforced composites:A review on experimental approaches and fatigue damage mechanisms[J]. Progress in Materials Science,2021,118:100762. [102] KUGUEL R. A relation between theoretical stress concentration factor and fatigue notch factor deduced from the concept of highly stressed volume[C]//Proceedings of the Proc. ASTM,1961. [103] AIGNER R,POMBERGER S,LEITNER M,et al. On the statistical size effect of cast aluminium[J]. Materials,2019,12(10):1578. [104] ALAVA M J,NUKALA P K V V,ZAPPERI S. Size effects in statistical fracture[J]. Journal of Physics D-Applied Physics,2009,42(21):214012. [105] WANG W,ZHONG Y,LU K,et al. Size effects and strength fluctuation in nanoscale plasticity[J]. Acta Materialia,2012,60(8):3302-3309. [106] EL KHOUKHI D,MOREL F,SAINTIER N,et al. Experimental investigation of the size effect in high cycle fatigue:Role of the defect population in cast aluminium alloys[J]. International Journal of Fatigue,2019,129:105222. [107] ZHU S P,AI Y,LIAO D,et al. Recent advances on size effect in metal fatigue under defects:a review[J]. International Journal of Fracture,2022,234(1-2):21-43. [108] TRIDELLO A,NIUTTA C B,BERTO F,et al. Size-effect in very high cycle fatigue:A review[J]. International Journal of Fatigue,2021,153:106462. [109] TORABIAN N,FAVIER V,DIRRENBERGER J,et al. Correlation of the high and very high cycle fatigue response of ferrite based steels with strain rate-temperature conditions[J]. Acta Materialia,2017,134:40-52. [110] SCHNEIDER N,BOEDECKER J,BERGER C,et al. Frequency effect and influence of testing technique on the fatigue behaviour of quenched and tempered steel and aluminium alloy[J]. International Journal of Fatigue,2016,93:224-231. [111] HONG Y,HU Y,ZHAO A. Effects of loading frequency on fatigue behavior of metallic materials-A literature review[J]. Fatigue & Fracture of Engineering Materials & Structures,2023,46(8):3077-3098. [112] WU Z R,HU X T,SONG Y D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading[J]. International Journal of Fatigue,2014,59:170-175. [113] 刘亮. Ti60-TC17异种钛合金电子束焊接头的多轴疲劳寿命研究[D]. 南京:南京航空航天大学,2015. LIU Liang. Multiaxial fatigue life evaluation of Ti60-TC17 dissimilar titanium alloy electron beam welded joints[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2015. [114] 王霄翔. TC17钛合金电子束焊接接头多轴疲劳寿命研究[D]. 南京:南京航空航天大学,2012. WANG Xiaoxiang. Multiaxial fatigue life evaluation of TC17 titanium alloy electron beam welded joints[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012. [115] ZHAO B F,XIE L Y,BAI X,et al. A multi-axial low-cycle fatigue life prediction model considering effects of additional hardening[J]. Fatigue & Fracture of Engineering Materials & Structures,2018,41(7):1488-1503. [116] 田玉杰,尚德广,陈宏,等. 单多轴变幅加载下TC21钛合金疲劳特性[J]. 航空材料学报,2013,33(2):74-80. TIAN Yujie,SHANG Deguang,CHEN Hong,et al. Fatigue properties of TC21 Ti-alloy under uniaxial and multiaxial cyclic variable amplitude loading[J]. Journal of Aeronautical Materials,2013,33(2):74-80. [117] ZHU S P,YU Z Y,CORREIA J,et al. Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials[J]. International Journal of Fatigue,2018,112:279-288. [118] 徐姣,尚德广,孙国芹,等. 多轴变幅加载下GH4169合金疲劳寿命预测[J]. 北京工业大学学报,2012,38(10):1462-1466. XU Jiao,SHANG Deguang,SUN Guoqin,et al. Fatigue life prediction for GH4169 superalloy under multiaxial variable amplitude loading[J]. Journal of Beijing University of Technology,2012,38(10):1462-1466. [119] 孙国芹,尚德广,王冬. 高温多轴变幅疲劳损伤累积[J]. 北京工业大学学报,2012,38(11):1629-1632. SUN Guoqin,SHANG Deguang,WANG Dong. Fatigue damage accumulation under multiaxial variable amplitude loading at high temperature[J]. Journal of Beijing University of Technology,2012,38(11):1629-1632. [120] SUN G Q,SHANG D G,BAO M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials[J]. International Journal of Fatigue,2010,32(7):1108-1115. [121] WANG J J,SHANG D G,SUN Y J,et al. Thermo-mechanical fatigue life prediction method under multiaxial variable amplitude loading[J]. International Journal of Fatigue,2019,127:382-394. [122] LI F D,SHANG D G,ZHANG C C,et al. Thermomechanical fatigue life prediction method for nickel-based superalloy in aeroengine turbine discs under multiaxial loading[J]. International Journal of Damage Mechanics,2019,28(9):1344-1366. [123] REN Y P,SHANG D G,LI F D,et al. Life prediction approach based on the isothermal fatigue and creep damage under multiaxial thermo-mechanical loading[J]. International Journal of Damage Mechanics,2019,28(5):740-757. [124] 李鑫. 基于损伤力学的GH4169高温多轴寿命预测研究[D]. 南京:南京航空航天大学,2019. LI Xin. Damage mechanics life prediction method of GH4169 based on research on high temperature multiaxial[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019. [125] 马笑笑. 多轴载荷下航空结构疲劳寿命分析[D]. 南京:南京航空航天大学,2018. MA Xiaoxiao. Fatigue life prediction of aviation structure under multiaxial loading [D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018. [126] 黄凯. 高温合金K465的力学表征及其疲劳寿命分析[D]. 北京:北京理工大学,2017. HUANG Kai. Mechanical behavior and fatigue performance of K465[D]. Beijing:Beijing Institute of Technology,2017. [127] LUO P,YAO W,LI P. A notch critical plane approach of multiaxial fatigue life prediction for metallic notched specimens[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(4):854-870. |
[1] | 董庆兵, 陈壮, 罗振涛, 张杰, 魏静. 三维线接触微动界面疲劳寿命预测及断裂行为研究[J]. 机械工程学报, 2024, 60(8): 107-120. |
[2] | 韩锋, 赵晓航, 苏玉磊, 汪冬冬, 严岩, 倪中华. 面向氢能装备的深冷高压试验平台研究[J]. 机械工程学报, 2023, 59(16): 390-396. |
[3] | 孙国芹, 尚德广, 王杨. 金属多轴疲劳行为与寿命预测研究进展[J]. 机械工程学报, 2021, 57(16): 153-172. |
[4] | 宁祚良, 陈刚, 陈旭. 多轴试验测试技术的发展与应用[J]. 机械工程学报, 2021, 57(16): 16-36. |
[5] | 刘利强, 张显程, 谈建平, 王润梓, 涂善东. 严苛环境高温力学试验技术研究进展[J]. 机械工程学报, 2021, 57(16): 3-15. |
[6] | 安琪, 赵华, 刘映安, 付茂海. 基于多轴准则的货车车体疲劳寿命分析方法[J]. 机械工程学报, 2019, 55(2): 64-72. |
[7] | 李智, 薛红前. 超声疲劳裂纹扩展与摩擦生热研究[J]. 机械工程学报, 2016, 52(4): 103-110. |
[8] | 刘俭辉,王生楠,黄新春,傅益战. 基于损伤力学-临界面法预估多轴疲劳寿命[J]. 机械工程学报, 2015, 51(20): 120-127. |
[9] | 夏天翔, 姚卫星, 刘向民, 嵇应凤. 考虑材料分散性后Miner理论在多轴两级阶梯谱下的适用性研究[J]. 机械工程学报, 2015, 51(14): 38-45. |
[10] | 陈吉平;丁智平;曾军;白晓鹏;王卫峰. 基于灰色理论镍基单晶合金多轴非比例加载低周疲劳研究[J]. , 2014, 50(24): 66-73. |
[11] | 姜潮;李博川;韩旭. 一种考虑路径影响的剪切式多轴疲劳寿命模型[J]. , 2014, 50(16): 21-26. |
[12] | 吴志荣;胡绪腾;宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. , 2013, 49(2): 59-66. |
[13] | 张劲;李炜;张士诚. 封隔器超弹性胶筒力学性能的试验研究[J]. , 2011, 47(8): 71-76. |
[14] | 李静;孙强;李春旺;乔艳江;张忠平. 一种新的多轴疲劳寿命预测方法[J]. , 2009, 45(9): 285-290. |
[15] | 赵勇铭;宋迎东. 椭圆方程式的多轴疲劳寿命预测模型[J]. , 2009, 45(11): 312-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||