机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 153-172.doi: 10.3901/JME.2021.16.153
• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇 下一篇
孙国芹, 尚德广, 王杨
收稿日期:
2020-09-30
修回日期:
2021-05-03
出版日期:
2021-08-20
发布日期:
2021-11-16
通讯作者:
孙国芹(通信作者),女,1973年出生,博士,教授,博士研究生导师。主要研究方向为机械结构强度。E-mail:sguoq@bjut.edu.cn
作者简介:
尚德广,男,1963年出生,博士,教授,博士研究生导师。主要研究方向为机械结构强度与耐久性。E-mail:shangdg@bjut.edu.cn
基金资助:
SUN Guoqin, SHANG Deguang, WANG Yang
Received:
2020-09-30
Revised:
2021-05-03
Online:
2021-08-20
Published:
2021-11-16
摘要: 多轴疲劳损伤行为和寿命预测研究关系着复杂加载条件下金属结构件的服役安全,一直受到科学和工程领域的重视。总结多轴低周和高周疲劳试验性能测试一般过程和疲劳行为研究,重点论述多轴非比例加载对低周疲劳和高周疲劳行为的影响,受加载路径,加载载荷和材料类型的影响,非比例加载对材料低周疲劳循环硬化行为和疲劳寿命的影响有差异,对低周疲劳和高周疲劳表现的疲劳行为的影响也有差别,作用机理不尽一致。单轴本构关系通过引入非比例度因子、修正循环强度系数或将多轴加载时的应变等效为单轴应变等方式可推广到多轴疲劳领域。基于应力、应变、能量、临界面和临界面应变能密度法的多轴疲劳寿命预测模型在文中做了综述,疲劳损伤参量中包含能量项的一些多轴疲劳寿命预测方法常被用于多轴低周和高周疲劳寿命预测。缺口件多轴疲劳寿命可采用多轴损伤参量结合局部应力应变法、应力梯度法、应力场强法及临界距离法等进行预测。
中图分类号:
孙国芹, 尚德广, 王杨. 金属多轴疲劳行为与寿命预测研究进展[J]. 机械工程学报, 2021, 57(16): 153-172.
SUN Guoqin, SHANG Deguang, WANG Yang. Research Progress on Fatigue Behavior and Life Prediction under Multiaxial Loading for Metals[J]. Journal of Mechanical Engineering, 2021, 57(16): 153-172.
[1] LI Daohang,SHANG Deguang,XUE Long,et al. Real-time damage evaluation method for multiaxial thermo-mechanical fatigue under variable amplitude loading[J]. Engineering Fracture Mechanics,2020,229:106948. [2] STOPKA K S,MCDOWELL D L. Microstructure sensitive computational multiaxial fatigue of Al 7075-T6 and duplex Ti-6Al-4V[J]. International Journal of Fatigue,2020,133:105460. [3] FATEMI A,MOLAEI R,PHAN N. Multiaxial fatigue of additive manufactured metals:Performance,analysis,and applications[J]. International Journal of Fatigue,2020,134:105479. [4] SHARIFIMEHR S,FATEMI A. Fatigue analysis of ductile and brittle behaving steels under variable amplitude multiaxial loading[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(8):1722-1742. [5] SUN Jingyu,YUAN Huang. Life assessment of multiaxial thermomechanical fatigue of a nickel-based superalloy Inconel 718[J]. International Journal of Fatigue,2019,120:228-240. [6] SAKANE M,ITOH T. A synthesis of cracking directions in tension-torsion multiaxial low cycle fatigue at high and room temperatures[J]. Theoretical and Applied Fracture Mechanics,2018,98:13-22. [7] MAO Jianfeng,TANG Di,BAO Shiyi,et al. High temperature strength and multiaxial fatigue life assessment of a tubesheet structure[J]. Engineering Failure Analysis,2016,68:10-21. [8] XIE Xuefeng,JIANG Wenchun,CHEN Jingkai,et al. Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence:Experimental and damage-coupled constitutive modeling[J]. International Journal of Plasticity,2019,114:196-214. [9] CHEN Yajun,XU Pengda,LIU Chenchen,et al. Multiaxial fatigue behavior and life prediction of 7075-T651 aluminum alloy under two-step loading[J]. Engineering Fracture Mechanics,2020,230:107007. [10] ZHANG Jun,LI Haiyu,Li Hui,et al. Investigation on fatigue performance of adhesively bonded butt-joints and multiaxial life estimation using stress-based failure models[J]. Theoretical and Applied Fracture Mechanics,2020,107:102498. [11] XU Chuanheng,LIU Gang,LI Zhiyuan,et al. Multiaxial fatigue life prediction of tubular K-joints using an alternative structural stress approach[J]. Ocean Engineering,2020,212:107598. [12] MORISHITA T,ITOH T,BAO Z. Multiaxial fatigue strength of type 316 stainless steel under push-pull,reversed torsion,cyclic inner and outer pressure loading[J]. International Journal of Pressure Vessels and Piping,2016,139-140:228-236. [13] FREITAS M D. Multiaxial fatigue:From materials testing to life prediction[J]. Theoretical and Applied Fracture Mechanics,2017,92:360-372. [14] 马楠楠,陶春虎,何玉怀,等. 航空发动机叶片多轴疲劳试验研究进展[J]. 航空材料学报,2012,32(6):44-49.MA Nannan,TAO Chunhu,HE Yuhuai,et al. Research progress of multiaxial fatigue test methods on blades of aviation engine[J]. Journal of Aeronautical Materials,2012,32(6):44-49. [15] GRYGUĆ A,BEHRAVESH S B,JAHED H,et al. Multiaxial fatigue and cracking orientation of forged AZ80 magnesium alloy[J]. Procedia Structural Integrity,2020,25:486-495. [16] 尚德广. 比例与非比例加载下多轴疲劳断口分析[J]. 机械强度,2006(3):392-396.SHANG Deguang. Multiaxial fatigue fractographic analysis subjected to proportional and nonproportional loadings[J]. Journal of Mechanical Strength,2006(3):392-396. [17] FATEMI A,SOCIE D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue and Fracture of Engineering Materials and Structures,1988,11(3):149-165. [18] WANG C H,BROWN M W,A path-independent parameter for fatigue under proportional and non-proportional loading[J]. Fatigue and Fracture of Engineering Materials and Structures,1993,16(12):1285-1298. [19] 崔云,陈刚,王磊,等. 多轴非比例载荷下镁合金AZ21的疲劳性能研究[J]. 天津大学学报,2017,50(3):283-289.CUI Yun,CHEN Gang,WANG Lei,et al. Fatigue characteristics of Mg Alloy AZ21 under multiaxial non-proportional loading[J]. Journal of Tianjin University,2017,50(3):283-289. [20] WANG Yingyu,YAO Weixing. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading[J]. International Journal of Fatigue,2006,28:401-408. [21] SUN Guoqin,SHANG Deguang,BAO Ming. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials[J]. International Journal of Fatigue,2010,32(7):1108-1115. [22] 尚德广,孙国芹,蔡能,等. 非比例加载下GH4169高温多轴疲劳行为研究[J]. 航空材料学报,2006(6):6-11.SHANG Deguang,SUN Guoqin,CAI Neng,et al. Multiaxial fatigue behavior of GH4169 superalloy under non-proportional loadings at high temperature[J]. Journal of Aeronautical Materials,2006(6):6-11. [23] REIS L,LI B,FREITAS M D. Crack initiation and growth path under multiaxial fatigue loading in structural steels[J]. International Journal of Fatigue,2009,31(11-12):1660-1668. [24] CHEN Gang,CHEN Xu. Fatigue damage coupled constitutive model for 63Sn37Pb solder under proportional and non-proportional loading[J]. Mechanics of Materials,2007,39(1):11-23. [25] JAYARAMAN N,DITMARS M M. Torsional and biaxial (tensions-torsion) fatigue damage mechanisms in Waspaloy at room temperature[J]. International Journal of Fatigue,1989,11(5):309-318. [26] CHEN X,GAO Q,SUN X F. Damage analysis of low-cycle fatigue under non-proportional loading[J]. International Journal of Fatigue,1994,16(3):221-225. [27] ITOH T,MIYAZAKI T. A damage model for estimating low cycle fatigue lives under nonproportional multiaxial loading[J]. European Structural Integrity Society,2003:31,423-439. [28] DOONGS H,SOCIE D F,ROBERTSON I M. Dislocation substructures and nonproportional hardening[J]. Journal of Engineering Materials and Technology,1990(4):456-465. [29] ALBINMOUSA J,JAHED H. Multiaxial effects on LCF behaviour and fatigue failure of AZ31B magnesium extrusion[J]. International Journal of Fatigue,2014,67:103-116. [30] 王雷,王德俊. 在多轴载荷下45钢的循环特性[J],材料研究学报,2002,16(4):439-442.WANG Lei,WANG Dejun. Fatigue characteristic of 45 steel under multiaxial loading[J]. Chinese Journal of Materials Research,2002,16(4):439-442. [31] 肖林,白菊丽. Zr-4合金双轴疲劳行为及其微观变形机理,Ⅰ.双轴疲劳变形行为[J]. 金属学报,2000,36(9):913-918.XIAO Lin,BAI Juli. Biaxial fatigue behavior and microscopic deformation mechanism of zircaloy-4,Ⅰ. Biaxial fatigue deformation behavior of Zircaloy-4[J]. Acta Metallurgica Sinica,2000,36(9):913-918. [32] TAIRA S,INOUE T,YOSHIDA S. Low cycle fatigue under multiaxial stress in the case of combined cyclic tension compression and cyclic torsion out-of-phase at elevated temperature[J]. Transactions of the Japan Society of Mechanical Engineers,1968,34:255-260. [33] LAMBA H S,SIDEBOTTOM O M. Cyclic plasticity for nonproportional paths(Part 1):Cyclic hardening,erasure of memory, and subsequent strain hardening experiments[J]. Journal of Engineering Materials and Technology,1978,100:96-103. [34] KANAZAWA K,MILLER K J,BROWN M W. Cyclic deformation of 1% Cr-Mo-V steel under out-of-phase loads[J]. Fatigue of Engineering Materials and Structures,1979,2:217-228. [35] 肖林,白菊丽. Zr-4合金双轴疲劳行为及其微观变形机理Ⅱ:双轴循环变形亚结构及其织构的发展[J]. 金属学报,2000,36(9):919-925.XIAO Lin,BAI Juli. Biaxial fatigue behavior and microscopic deformation mechanism of zircaloy-4,Ⅱ:Cyclic deformation substructures and texture development[J]. Acta Metallurgica Sinica,2000,36(9):919-925. [36] KIDA S,ITOH T,SAKANE M,et al. Dislocation structure and non-proportional hardening of type 304 stainless steel[J]. Fatigue & Fracture of Engineering Materials & Structures,1997,20(10):1375-1386. [37] 朱正宇,何国球,张卫华,等. 非比例载荷下多轴疲劳微观机理的研究进展[J]. 同济大学学报,2006(11):1510-1514.ZHU Zhengyu,HE Guoqiu,ZHANG Weihua,et al. Recent advances in micromechanisms of multiaxial fatigue under nonproportional loading[J]. Journal of Tongji University,2006(11):1510-1514. [38] 陈旭,高庆,孙训方,等. 非比例载荷下多轴低周疲劳研究最新进展[J]. 力学进展,1997(3):26-38. CHEN Xu,GAO Qing,SUN Xunfang,et al. Recent advances of multiaxial low-cycle fatigue under nonproportional loading[J]. Advances in Mechanics,1997(3):26-38. [39] 朱正宇,何国求,丁向群,等. 多轴载荷下ZL101铝合金的低周疲劳行为[J]. 中国有色金属学报,2007(6):916-921.ZHU Zhengyu,HE Guoqiu,DING Xiangqun,et al. Low cycle fatigue behavior of cast aluminum alloy ZL101 under multi-axial loading[J]. The Chinese Journal of Nonferrous Metals,2007(6):916-921. [40] 张小元,张克实,黄世鸿,等. Q235结构钢低周多轴疲劳寿命评估方法的实验研究[J]. 广西大学学报,2013,38(4):982-990.ZHANG Xiaoyuan,ZHANG Keshi,HUANG Shihong,et al. Experimental research on life evaluation for low cycle multiaxial fatigue of Q235 steel[J]. Journal of Guangxi University,2013,38(4):982-990. [41] NAKAMURA H,TAKANASHI M,ITOH T,et al. Fatigue crack initiation and growth behavior of Ti-6Al-4V under non-proportional multiaxial loading[J]. International Journal of Fatigue,2011,33(7):842-848. [42] 陈旭,田涛,安柯. 1Cr18Ni9Ti不锈钢的非比例循环强化性能[J]. 力学学报,2001,33(5):698.CHEN Xu,TIAN Tao,AN Ke. Nonproportional cyclic hardening behaviors of 1Cr18Ni9Ti stainless steel[J]. Chinese Journal of Theoretical and Applied Mechanics,2001,33(5):698. [43] 杨显杰,高庆,何国求,等. 316不锈钢的非比例循环特性[J]. 金属学报,1996,32(1):15-22.YANG Xianjie,GAO Qing,HE Guoqiu,et al. On nonproportional cyclic properties of type 316 stainless steels[J]. Acta Metallurgica Sinica,1996,32(1):15-22. [44] KREMPL E,LU H. The hardening and rate-dependent behavior of fully annealed AISI type 304 stainless steel under biaxial in-phase and out-of-phase strain cycling at room temperature[J]. Journal of Engineering Materials and Technology,1984,106:376-382. [45] SHAMSAEI N,FATEMI A,SOCIE D F. Multiaxial cyclic deformation and non-proportional hardening employing discriminating load paths[J]. International Journal of Plasticity,2010,26(12):1680-1701. [46] HAN C,CHEN X,KIM K S. Evaluation of multiaxial fatigue criteria under irregular loading[J]. International Journal of Fatigue,2002,24(9):913-922. [47] FATEMI A,SHAMSAEI N. Multiaxial fatigue:An overview and some approximation models for life estimation[J]. International Journal of Fatigue,2011,33(8):948-958. [48] SKIBICKI D,PEJKOWSKI L. The relationship between additional non-proportional hardening coefficient and fatigue life[J]. International Journal of Fatigue,2019,123:66-78. [49] OHNO N. A constitutive model of cyclic plasticity with a nonhardening strain region[J]. Journal of applied mechanics,1982,49:721-727. [50] TANAKA E,MURAKAMI S,ŌOKA M. Effects of strain path shapes on non-proportional cyclic plasticity[J]. Journal of the Mechanics and Physics of Solids,1985,33(6):559-575. [51] MCDOWELL D L. A two surface model for transient nonproportional cyclic plasticity:Part I-Development of appropriate equations[J]. Journal of Applied Mechanics,1985,52:298-308. [52] MURAKAMI S,KAWAI M,AOLD K,et al. Temperature-dependence of multiaxial nonproportional cyclic behavior of type stainless steel[J]. Journal of Engineering Materials and Technology,1989,111:32-39. [53] MCDOWELL D L. Simple experimentally motivated cyclic plasticity model[J]. Journal of Engineering Mechanics,1987,113:378-397. [54] TRAMPCZYNSKI W,MROZ Z. Anisotropic hardening model and its application to cyclic loading[J]. International Journal of Plasticity,1992,8(8):925-946. [55] BORODII M V. An approximate method of determination of maximum strain hardening levels in metals under nonproportional low-cylce loading[J]. Strength of Materials,2006,38(2):128-134. [56] ITOH T,SAKANE M,OHNAMI M. et al. Nonproportional low cycle fatigue criterion for type 304 stainless steel[J]. Journal of Engineering Materials and Technology,1995,117(3):285-292. [57] CHEN X,GAO Q,SUN X F. Low-cycle fatigue under non-proportional loading[J]. Fatigue and Fracture of Engineering Materials and Structures,1996,19(7):839-854. [58] SHANG Deguang,WANG Dejun,YAO Weixing. A simple approach to the description of multiaxial cyclic stress-strain relationship[J]. International Journal of Fatigue,2000,22(3):251-256. [59] Wu Hao. An empirical non-proportional cyclic plasticity approach under multiaxial low-cycle fatigue loading[J]. International Journal of Mechanical Sciences,2018,142:66-73. [60] PEJKOWSKI Ł,SKIBICKI D. Stress-strain response and fatigue life of four metallic materials under asynchronous loadings:Experimental observations[J]. International Journal of Fatigue,2019,128:105202. [61] ZHOU J,SUN Z,KANOUTÉ P,et al. Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime[J]. International Journal of Plasticity,2018,107:54-78. [62] PAUL S K. Prediction of non-proportional cyclic hardening and multiaxial fatigue life for FCC and BCC metals under constant amplitude of strain cycling[J]. Materials Science and Engineering:A,2016,656:111-119. [63] ITOH T,CHEN X,NAKAGAWA T,et al. A simple model for stable cyclic stress-strain relationship of type 304 stainless steel under nonproportional loading[J]. Journal of Engineering Materials and Technology,2000,122:1-9. [64] 时新红,张建宇,鲍蕊,等. 拉扭复合加载下相位差对2A12-T4铝合金高周疲劳失效的影响[J]. 航空材料学报,2010,30(5):93-96.SHI Xinhong,ZHANG Jianyu,BAO Rui,et al. Effect of phase angle on high-cycle fatigue failure of 2A12-T4 aluminum alloy under tension-torsion non-proportional loading[J]. Journal of Aeronautical Materials,2010,30(5):93-96. [65] PAPADOPOULOS I V,DAVOLI P,GORLA C,et al.. A comparative study of multiaxial high-cycle fatigue criteria for metals[J]. International Journal of Fatigue,1997,19(3):219-235. [66] MCDIARMID D L. Fatigue under out-of phase bending and torsion[J]. Fatigue & Fracture of Engineering Materials & Structures,1987,9(6):457-475. [67] SONSINO C M. Influence of material's ductility and local deformation mode on multiaxial fatigue response[J]. International Journal of Fatigue,2011,33(8):930-947. [68] GUERCHAIS R,MOREL F,SAINTIER N. Effect of defect size and shape on the high-cycle fatigue behavior[J]. International Journal of Fatigue,2017,100:530-539. [69] MCCULLOUGH R R,JORDON J B,ALLISON P G,et al. Fatigue crack nucleation and small crack growth in an extruded 6061 aluminum alloy[J]. International Journal of Fatigue,2019,119:52-61. [70] SINGH A K,DATTA S,CHATTOPADHYAY A,et al. Fatigue crack initiation and propagation behavior in Al-7075 alloy under in-phase bending-torsion loading[J]. International Journal of Fatigue,2019,126:346-356. [71] SHAMSAEI N,FATEMI A. Small fatigue crack growth under multiaxial stresses[J]. International Journal of Fatigue,2014,58:126-135. [72] 尚德广,王德俊,韩楠林. 疲劳裂纹萌生尺寸的定义及其确定方法[J]. 机械强度,1996,18(2):59-62.SHANG Deguang,WANG Dejun,HAN Nanlin. The definition and determining method of fatigue crack initiation size[J]. Journal of Mechanical Strength,1996,18(2):59-62. [73] 吴学仁,刘建中. 基于小裂纹理论的航空材料疲劳全寿命预测[J]. 航空学报,2006,27(2):219-226.WU Xueren,LIU Jianzhong. Total fatigue life prediction for aeronautical materials by using small-crack theory[J]. Acta Aeronautica et Astronautica Sinica,2006,27(2):219-226. [74] 陈勃,高玉魁,吴学仁,等. 喷丸强化7475-T7351铝合金的小裂纹行为和寿命预测[J]. 航空学报,2010,31(3):519-525. CHEN Bo,GAO Yukui,WU Xueren,et al. Small crack behavior and fatigue life prediction for shot peening aluminum alloy 7475-T7351[J]. Acta Aeronautica et Astronautica Sinica,2010,31(3):519-525. [75] 张丽,吴学仁. 基于小裂纹理论的GH4169高温合金的疲劳全寿命预测[J]. 航空材料学报,2014,34(6):75-83.ZHANG Li,WU Xueren. fatigue-life prediction method based on small-crack theory in GH4169 superalloy[J]. Journal of Aeronautical Materials,2014,34(6):75-83. [76] VORMWALD M,HERTEL O. Short crack approach for multiaxial fatigue assessment[J]. Material wissenschaft und Werkstofftechnik,2008,39(10):702-710. [77] LIU Hao,SHANG Deguang,LIU Jianzhong,et al. Fatigue life prediction of laser welded 6156 Al-alloy joints based on crack closure[J]. Theoretical and Applied Fracture Mechanics,2014,74:181-187. [78] FOLETTI S,COREA F,RABBOLINI S,et al. Short cracks growth in low cycle fatigue under multiaxial in-phase loading[J]. International Journal of Fatigue,2018,107:49-59. [79] ZHAO Xiangfeng,SHANG Deguang,SUN Yujuan,et al. Multiaxial fatigue life prediction based on short crack propagation model with equivalent strain parameter[J]. Journal of Materials Engineering and Performance,2018,27(1):324-332. [80] FELTNER C E,MORROW J D. Microplastic strain hysteresis energy as a criterion for fatigue fracture[J]. Journal of Basic Engineering,1961,83(1):15-22. [81] OSTERGREN W J. A damage function and associated failure equation for predicting hold time and frequency effects in elevated temperature low cycle fatigue[J]. Journal of Testing and Evaluation,1976,4(5):327-339. [82] GARUD Y S. A new approach to the evaluation of fatigue under multiaxial loading[J]. Journal of Engineering Materials and Technology,1981,103(2):118-125. [83] ELLYIN F,KUJAWSKI D. Plastic strain energy in fatigue failure[J]. Journal of Pressure Vessel Technology,1984,106(4):342-347. [84] JAHED H,VARVANI-FARAHANI A. Upper and lower fatigue life limits model using energy-based fatigue properties[J]. International Journal of Fatigue,2006,28(5-6):467-473. [85] ZHU Haipeng,WU Hao,LU Yingya,et al. A novel energy-based equivalent damage parameter for multiaxial fatigue life prediction[J]. International Journal of Fatigue,2019,121:1-8. [86] FENG E S,WANG X G,JIANG C. A new multiaxial fatigue model for life prediction based on energy dissipation evaluation[J]. International Journal of Fatigue,2019,122(1):1-8. [87] GAN Lei,WU Hao,ZHONG Zheng. Multiaxial fatigue life prediction based on a simplified energy-based model[J]. International Journal of Fatigue. 2021,144:106036. [88] LEE Y L,CHIANG Y J. Fatigue predictions for components under biaxial reversed loading[J]. Journal of Testing and Evaluation,1991,19(5):359-367. [89] JORDAN E H,BROWN M W,MILLER K J. Fatigue under severe nonproportional loading[J]. Multiaxial Fatigue,1985,853:569-585. [90] BROWN M W,MILLER K J. A theory for fatigue failure under multiaxial stress-strain conditions[J]. Proceedings of the Institution of Mechanical Engineers,1973,187(65):745-755. [91] KANDIL F A,BROWN M W,MILLER K J. Biaxial low-cycle fatigue fracture of 316 stainless steel at elevated temperature. In:Book 280[M]. London:The Metal Society,1982. [92] SMITH R H,WATSON P,TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials,1970,5(4):767-778. [93] SHANG Deguang,WANG Dejun. A new multiaxial fatigue damage model based on the critical plane approach[J]. International Journal of Fatigue,1998,20(3):241-245. [94] 吴志荣,胡绪腾,宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. 机械工程学报,2013,49(2):59-66.WU Zhirong,HU Xuteng,SONG Yingdong. Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter[J]. Journal of Mechanical Engineering,2013,49(2):59-66. [95] 姜潮,邓群,李博川. 考虑非比例附加损伤的多轴低周疲劳寿命模型[J]. 力学学报,2015,47(4):634-641.JIANG Chao,DENG Qun,LI Bochuan. A new multiaxial fatigue life prediction model based on the nonproportional additional damage[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(4):634-641. [96] LI Jing,LI Chunwang,ZHANG Zhongping,et al. Fatigue life prediction for some metallic materials under constant amplitude multiaxial loading[J]. International Journal of Fatigue,2014,68:10-23. [97] LI Jing,QIU Yuanying,LI Chunwang,et al. Prediction of fatigue life under multiaxial loading by using a critical plane-based model[J]. Archive of Applied Mechanics,2018,89:629-937. [98] 刘嘉,李静,张忠平. 基于临界面法的剪切式多轴疲劳寿命预测模型[J]. 固体力学学报,2012,33(1):58-62.LIU Jia,LI Jing,ZHANG Zhongping. A multiaxial fatigue life prediction model with shear form based on the critical plane approach[J]. Acta Mechanica Solida Sinica,2012,33(1):58-62. [99] DAS J,SIVAKUMAR S M. Multiaxial fatigue life prediction of a high temperature steam turbine rotor using a critical plane approach[J]. Engineering Failure Analysis,2000,7(5):347-358. [100] PARK J,NELSON D. Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life[J]. International Journal of Fatigue,2000,22(1):23-39. [101] LIU K C. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction[J]. Advances in Multiaxial Fatigue,1993,1191:67-84. [102] CHU C C,CONLE F A,BONNEN J J. Multiaxial stress-strain modeling and fatigue life prediction of SAE axle shafts[J]. Advances in Multiaxial Fatigue,1993,1191:37-54. [103] CHU C C. Fatigue damage calculation using the critical plane approach[J]. Journal of Engineering Materials and Technology,1995,117(1):41-49. [104] GLINKA G,WANG G,PLUMTREE A. Mean Stress effects in multiaxial fatigue[J]. Fatigue and Fracture of Engineering Materials and Structures,1995,18(7-8):755-764. [105] CHEN X,XU S,HUANG D. A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under nonproportional loading[J]. Fatigue and Fracture of Engineering Materials and Structures,1999,22(8):679-686. [106] LI Hui,ZHANG Jun,SHEN Haozhong,et al. Multiaxial fatigue experiments and life prediction for silicone sealant bonding butt-joints[J]. Theoretical and Applied Fracture Mechanics,2019,103:102245. [107] VARVANI-FARAHANI A. A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions[J]. International Journal of Fatigue,2000,22(4):295-305. [108] ZHU Shunpeng,YU Zhengyong,LIU Qiang,et al. Strain energy-based multiaxial fatigue life prediction under normal/shear stress interaction[J]. International Journal of Damage Mechanics,2019,28(5):708-739. [109] XUE Long,SHANG Deguang,LI Daohang,et al. Equivalent energy-based critical plane fatigue damage parameter for multiaxial LCF under variable amplitude loading[J]. International Journal of Fatigue,2020,131:105350. [110] JIANG Y Y. A fatigue criterion for general multiaxial loading[J]. Fatigue and Fracture of Engineering Materials and Structures,2000,23(1):19-32. [111] WALAT K,KUREK M,OGONOWSKI P,et al. The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range[J]. International Journal of Fatigue,2012,37(4):100-111. [112] INCE A,GLINKA G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings[J]. International Journal of Fatigue,2014,62:34-41. [113] YU Zhengyong,ZHU Shunpeng,LIU Qiang,et al. Multiaxial fatigue damage parameter and life prediction without any additional material constants[J]. Metals. 2017,10(8):923. [114] LU C,MELENDEZ J,MARTÍNEZ-ESNAOLA J M. Modelling multiaxial fatigue with a new combination of critical plane definition and energy-based criterion[J]. International Journal of Fatigue,2018,108:109-115. [115] SONG Di,KANG Guozheng,YU Chao,et al. Non-proportional multiaxial fatigue of super-elastic NiTi shape memory alloy micro-tubes:Damage evolution law and life-prediction model[J]. International Journal of Mechanical Sciences,2017,131-132:325-333. [116] ZHANG Keshi,WOODY Ju J,LI Zhenhuan,et al. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity[J]. Mechanics of Materials,2015,85:16-37. [117] ZHONG Bo,WANG Yongqiao,WEI Dasheng,et al. Multiaxial fatigue life prediction for powder metallurgy superalloy FGH96 based on stress gradient effect[J]. International Journal of Fatigue,2018,109:26-36. [118] PAPUGA J.A survey on evaluating the fatigue limit under multiaxial loading[J]. International Journal of Fatigue, 2011,33(2):153-165. [119] KAROLCZUK A,KLUGER K,LOGODA T. A correction in the algorithm of fatigue life calculation based on the critical plane approach[J]. International Journal of Fatigue,2016,83:174-183. [120] GOUGH H J,POLLARD H V. The strength of metals under combined alternating stresses[J]. Proceedings of the Institute of Mechanical Engineers,1935,131:3-103. [121] GOUGH H J. Engineering steels under combined cyclic and static stresses[J]. Journal of the American Society for Naval Engineers,1950,62:646-682. [122] GOLOS K M,DEBSKI D K,DEBSKI M A. A stress-based fatigue criterion to assess high-cycle fatigue under in-phase multiaxial loading conditions[J]. Theoretical and Applied Fracture Mechanics,2014,73:3-8. [123] KHALIJ L,PAGNACCO E,TROIAN R. Fatigue criterion improvement of Gough and Nishihara & Kawamoto to predict the fatigue damage of a wide range of metallic materials[J]. International Journal of Fatigue,2017,99:137-150. [124] SINES G. Fatigue criteria under combined stress or strains[J]. Journal of Engineering Materials & Technology,1981,103:82-90. [125] CROSSLANG B. Effect of large hydrostatic pressure on the torsional fatigue strength of an alloy steel[C]//Proceedings of the International Conference on Fatigue of Metals,Institution of Mechanical Engineers. London:1956:138-149. [126] LI B,SANTOS J L T,FREITAS M. A unified numerical approach for multiaxial fatigue limit evaluation[J]. Mechanics of Structures and Machines,2000,28(1):85-103. [127] MATSUBARA G,NISHIO K. Multiaxial high-cycle fatigue criterion considering crack initiation and non-propagation[J]. International Journal of Fatigue,2013,47:222-231. [128] KAKUNO H,KAWADA Y. A new criterion of fatigue strength of a round bar subjected to combined static and repeated bending and torsion[J]. Fatigue & Fracture of Engineering Materials & Structures,1979,2:229-236. [129] VU Q H,HALM D,NADOT Y. Multiaxial fatigue criterion for complex loading based on stress invariants[J]. International Journal of Fatigue,2010,32:1004-1014. [130] BERNASCONI A. Efficient algorithms for calculation of shear stress amplitude and amplitude of the second invariant of the stress deviator in fatigue criteria applications[J]. International Journal of Fatigue,2002,24:649-657. [131] MAMIYA E N,CASTRO F C,ARAÚJO J A. Recent developments on multiaxial fatigue:The contribution of the University of Brasĺlia[J]. Theoretical and Applied Fracture Mechanics,2014,73:48-59. [132] LEILA K,EMMANUEL P,SYLVAIN L. A measure of the equivalent shear stress amplitude from a prismatic hull in the principal coordinate system[J]. International Journal of Fatigue,2010,32:1977-1984. [133] FINDLEY W N. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending[J]. Journal of Engineering for Industry,1959,81:301-306. [134] MATAKE T. An explanation on fatigue limit under combined stress[J]. Bulletin of the JSME,1977,20:257-263. [135] MCDIARMID D L. A shear stress based critical-plane criterion of multiaxial fatigue failure for design and life prediction[J]. Fatigue & Fracture of Engineering Materials & Structures,1994,17(12):1475-1484. [136] CARPINTERI A,SPAGNOLI A,VANTADORI S. Multiaxial fatigue assessment using a simplified critical plane-based criterion[J]. International Journal of Fatigue,2011,33(8):969-976. [137] CARPINTERI A,RONCHEI C,SCORZA D,et al. Critical plane orientation influence on multiaxial high-cycle fatigue assessment[J]. Physical Mesomechanics,2015,18(4):348-354. [138] LIU Y,MAHADEVAN S. Multiaxial high-cycle fatigue criterion and life prediction for metals[J]. International Journal of Fatigue,2005,27:790-800. [139] NINIC D. A stress-based multiaxial high-cycle fatigue damage criterion[J]. International Journal of Fatigue,2006,28:103-113. [140] ZHANG Jialiang,SHANG Deguang,SUN YuJuan,et al. Multiaxial high-cycle fatigue life prediction model based on the critical plane approach considering mean stress effects[J]. International Journal of Damage,2018,27(1):32-46. [141] PAPUGA J,RUZICKA M. Two new multiaxial criteria for high cycle fatigue computation[J]. International Journal of Fatigue,2008,30:58-66. [142] ERICKSON M,KALLMEYER A R,VAN S,R H,et al. Development of a multiaxial fatigue damage model for high strength alloys using a critical plane methodology[J]. Journal of Engineering Materials and Technology,2008,130:1-9. [143] SUMAN S,KALLMEYER A,SMITH J. Development of a multiaxial fatigue damage parameter and life prediction methodology for non-proportional loading[J]. Fracture and Structural Integrity,2016,38:224-230. [144] SUSMEL L,LAZZARIN P. A bi-parametric Wohler curve for high cycle multiaxial fatigue assessment[J]. Fatigue & Fracture of Engineering Materials & Structures,2002,25(1):63-78. [145] DANG V K. Macro-micro approach in high-cycle multaixial fatigue[J]. Advances in Multiaxial Fatigue,1993,1191:120-130. [146] MOREL F. A fatigue life prediction method based on a mesoscopic approach in constant amplitude multiaxial loading[J]. Fatigue & Fracture of Engineering Materials & Structures,1998,21:241-256. [147] TAO Zhiqiang,ZHANG Ming,ZHU Yu,et al. Notch fatigue life prediction considering nonproportionality of local loading path under multiaxial cyclic loading[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,43(1):92-109. [148] 孙国芹,尚德广,陈建华,等. 缺口件两轴循环弹塑性有限元分析及寿命预测[J]. 机械工程学报,2008,43(2):134-138.SUN Guoqin,SHANG Deguang,CHEN Jianhua,et al. Elastoplastic finite element analysis and fatigue life prediction for notched specimens under biaxial cyclic loading[J]. Journal of Mechanical Engineering,2008,43(2):134-138. [149] SUN G,SHANG D. Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis[J]. Materials & Design,2010,31(1):126-133. [150] 金丹,王巍,田大将,等. 非比例载荷下缺口件疲劳寿命有限元分析[J]. 机械工程学报,2014,50(12):25-29.JIN Dan,WANG Wei,TIAN Dajiang,et al. Finite element analysis of fatigue life for notched specimen under nonproportional loading[J]. Journal of Mechanical Engineering,2014,50(12):25-29. [151] 王效贵,高增梁,邱宝象,等. 16MnR缺口件疲劳启裂寿命的理论分析与试验研究[J]. 核动力工程,2010,31(5):32-38.WANG Xiaogui,GAO Zengliang,QIU Baoxiang,et al. Theoretical modeling and experimental study on fatigue initiation life of 16MnR notched components[J]. Nuclear Power Engineering,2010,31(5):32-38. [152] 宋恩鹏,陆华,何刚,等. 多轴疲劳寿命分析方法在飞机结构上的应用[J]. 北京航空航天大学学报,2016,42(5):906-911.SONG Enpeng,LU Hua,HE Gang,et al. Application of multi-axial fatigue life estimation methods to aircraft structural components[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(5):906-911. [153] 刘灵灵,张婷,孔艳平,等. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学,2009,26(8):184-188.LIU Lingling,ZHANG Ting,KONG Yanping,et al. Fatigue life prediction for notched specimens under multiaxial non-proportional loading at high temperature[J]. Engineering Mechanics,2009,26(8):184-188. [154] LIAO Ding,ZHU Shunpeng,QIAN Guian. Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach[J]. International Journal of Mechanical Sciences,2019,160:38-50. [155] WU Z R,HU X T,LI Z X,et al. Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4[J]. Journal of Mechanical Science and Technology,2016,30(5):1997-2004. [156] LUO Peng,YAO Weixing,LI Piao. A notch critical plane approach of multiaxial fatigue life prediction for metallic notched specimens[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42:854-870. [157] 李玉春,姚卫星,温卫东. 应力场强法在多轴疲劳寿命估算中的应用[J]. 机械强度,2002(2):258-261.LI Yuchun,YAO Weixing,WEN Weidong. Application of stress field intensity for the prediction of multiaxial fatigue. Journal of Mechanical Strength,2002(2):258-261. [158] 王明春,宋恩鹏,赵清华. 基于应力场强方法的多轴高周疲劳寿命分析及应用[J]. 飞机设计,2015,35(4):10-13.WANG Mingchun,SONG Enpeng,ZHAO Qinghua. The prediction of multiaxial high cycle fatigue based on stress field intensity[J]. Aircraft Design,2015,35(4):10-13. [159] 钟波,王延荣,魏大盛. 考虑应力梯度影响的多轴缺口疲劳寿命预测[J]. 航空动力学报,2018,33(11):2602-2610.ZHONG Bo,WANG Yanrong,WEI Dasheng. Multiaxial notch fatigue life prediction based on stress gradient effect[J]. Journal of Aerospace Power,2018,33(11):2602-2610. [160] 金丹,缑之飞. 缺口件疲劳寿命预测新方法[J]. 航空材料学报,2017,37(2):81-87.JIN Dan,GOU Zhifei. A new method of fatigue life prediction for notched specimen[J]. Journal of Aeronautical Materials,2017,37(2):81-87. [161] LIU Bowen,YAN Xiangqiao. An extension research on the theory of critical distances for multiaxial notch fatigue finite life prediction[J]. International Journal of Fatigue,2018,117:217-229. [162] LUO Peng,YAO Weixing,SUSMEL L,et al. Prediction methods of fatigue critical point for notched components under multiaxial fatigue loading[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(12):2782-2793. [163] LIAO Ding,ZHU Shunpeng,QIAN Guian. Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach[J]. International Journal of Mechanical Sciences,2019,160:38-50. [164] 张成成,姚卫星. 典型缺口件疲劳寿命分析方法[J]. 航空动力学报,2013,28(6):1223-1230.ZHANG Chengcheng,YAO Weixing. Typical fatigue life analysis approaches for notched components[J]. Journal of Aerospace Power,2013,28(6):1223-1230. [165] HU Zheng,BERTO F,HONG Youshi,et al. Comparison of TCD and SED methods in fatigue lifetime assessment[J]. International Journal of Fatigue. 2019,123:105-134. |
[1] | 董庆兵, 陈壮, 罗振涛, 张杰, 魏静. 三维线接触微动界面疲劳寿命预测及断裂行为研究[J]. 机械工程学报, 2024, 60(8): 107-120. |
[2] | 赵久成, 赵宏伟. 材料多轴疲劳试验技术的发展与展望[J]. 机械工程学报, 2023, 59(20): 179-197. |
[3] | 宁祚良, 陈刚, 陈旭. 多轴试验测试技术的发展与应用[J]. 机械工程学报, 2021, 57(16): 16-36. |
[4] | 安琪, 赵华, 刘映安, 付茂海. 基于多轴准则的货车车体疲劳寿命分析方法[J]. 机械工程学报, 2019, 55(2): 64-72. |
[5] | 金甲, 张书明, 李五一, 薛卫军. 缺口件p-S-N曲线的随机有限元法与试验应用[J]. 机械工程学报, 2018, 54(10): 117-123. |
[6] | 刘俭辉,王生楠,黄新春,傅益战. 基于损伤力学-临界面法预估多轴疲劳寿命[J]. 机械工程学报, 2015, 51(20): 120-127. |
[7] | 彭艳, 李浩然. 考虑附加强化效应的多轴高周疲劳损伤演化模型[J]. 机械工程学报, 2015, 51(16): 135-142. |
[8] | 夏天翔, 姚卫星, 刘向民, 嵇应凤. 考虑材料分散性后Miner理论在多轴两级阶梯谱下的适用性研究[J]. 机械工程学报, 2015, 51(14): 38-45. |
[9] | 陈吉平;丁智平;曾军;白晓鹏;王卫峰. 基于灰色理论镍基单晶合金多轴非比例加载低周疲劳研究[J]. , 2014, 50(24): 66-73. |
[10] | 姜潮;李博川;韩旭. 一种考虑路径影响的剪切式多轴疲劳寿命模型[J]. , 2014, 50(16): 21-26. |
[11] | 金 丹;王 巍;田大将;林 伟. 非比例载荷下缺口件疲劳寿命有限元分析[J]. , 2014, 50(12): 25-29. |
[12] | 吴志荣;胡绪腾;宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. , 2013, 49(2): 59-66. |
[13] | 赵智力;方洪渊;杨建国;胡继超. 低匹配对接接头的“等承载”设计及拉伸疲劳行为[J]. , 2010, 46(10): 75-80. |
[14] | 李静;孙强;李春旺;乔艳江;张忠平. 一种新的多轴疲劳寿命预测方法[J]. , 2009, 45(9): 285-290. |
[15] | 赵勇铭;宋迎东. 椭圆方程式的多轴疲劳寿命预测模型[J]. , 2009, 45(11): 312-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||