• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (4): 200-211.doi: 10.3901/JME.2024.04.200

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

基于多级数据融合的核电站运行功能健康状态评估

蒋翔宇1, 冯毅雄1,2, 洪兆溪1,3, 胡炳涛1, 司恒远4, 谭建荣1   

  1. 1. 浙江大学流体动力基础件与机电系统全国重点实验室 杭州 310027;
    2. 贵州大学省部共建公共大数据国家重点实验室 贵阳 550025;
    3. 浙江大学宁波科创中心 宁波 315100;
    4. 深圳中广核工程设计有限公司 深圳 518172
  • 收稿日期:2023-04-06 修回日期:2023-11-02 出版日期:2024-02-20 发布日期:2024-05-25
  • 通讯作者: 洪兆溪,女,1990年出生,博士,助理研究员。主要研究方向为智能设计与不确定性优化决策。E-mail:hzhx@zju.edu.cn
  • 作者简介:蒋翔宇,女,1997年出生,博士研究生。主要研究方向为复杂装备状态预测与健康管理。E-mail:11925071@zju.edu.cn冯毅雄,男,1975年出生,博士,教授,博士研究生导师。主要研究方向为现代设计理论与方法等。E-mail:fyxtv@zju.edu.cn胡炳涛,男,1992年出生,博士。主要研究方向为产品设计理论与智能制造。E-mail:hubingtao@zju.edu.cn司恒远,男,1982年出生,正高级工程师。主要研究方向为核电厂型号研发,总体设计和智能技术。E-mail:sihengyuan@cgnpc.com.cn谭建荣,男,1954年出生,博士,教授,博士研究生导师,中国工程院院士。主要研究方向为CAX方法学、工程图学、企业信息化。E-mail:egi@zju.edu.cn
  • 基金资助:
    浙江省“尖兵”“领雁”研发攻关计划(2023X01214); 国家自然科学基金(52130501,52105281)资助项目

Health Status Assessment on the Operation Function of Nuclear Power Plants Based on Multi-level Data Fusion

JIANG Xiangyu1, FENG Yixiong1,2, HONG Zhaoxi1,3, HU Bingtao1, SI Hengyuan4, TAN Jianrong1   

  1. 1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027;
    2. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025;
    3. Ningbo Innovation Center, Zhejiang University, Ningbo 315100;
    4. China Nuclear Power Design Co., Ltd. (Shenzhen), Shenzhen 518172
  • Received:2023-04-06 Revised:2023-11-02 Online:2024-02-20 Published:2024-05-25

摘要: 随着新一代信息技术和人工智能技术与工业日益深度的融合协作,工业系统的运维从传统的人工定期运维向基于状态的智能维护迈进,其中健康状态评估作为智能运维的关键环节,通过源源不断的数据对系统的演化进行持续感知分析,为预测性维护提供决策支持。以核电站为研究对象,提出面向多部门协同环境下设备-系统-子功能-功能多层级融合的健康状态评估框架。针对工业系统控制的设备群具有大量状态参数的特点,提出基于偏差赋权的加权平均融合算子融合设备级参数,可快速定位并突出异常设备参数,避免评估结果因融合参数较多而展现“健康”假象;鉴于系统在不同健康状态下样本数据量的差异,提出考虑不平衡样本的非对称多分类学习方法融合系统健康值,多个健康等级之间通过信息有向迁移建立可自学习优化的健康评估模型,实现子功能健康状态及时自感知评估;最后基于集成学习融合多个子功能所属的健康评估器,得到宏观的运行功能健康状态评估决策。在提出的框架指导下对核电站反应性功能进行逐级健康状态评估,验证所提方法的有效性。

关键词: 工业系统, 健康状态评估, 数据融合, 核电站, 基于状态的维护

Abstract: With the new-generation information technologies and artificial intelligence that are deeply integrated with the industry, the maintenance of industrial systems is moving from the manual regular maintenance to state-based intelligent maintenance(IM). Health status assessment(HSA) is a key link in IM. Systemic states are recognized via the monitored data whereby provide decision support for maintenance. Taking nuclear power plants(NPP) as the research object, an HSA framework is proposed based on multi-level integration of equipment, system, sub-function and function in a multi-department collaboration. Due to equipment groups with numerous state parameters, a weighted average fusion operator based on deviation weighting is proposed to fuse equipment-level parameters, which can timely highlight the abnormal equipment. Considering the different amount of data in different health states, an asymmetric multi-class learning method under imbalanced datasets is proposed to fuse the systems’ health values. The self-learning HSA model is established by the information transfer between multiple health levels, so that the health status of sub-functions can be self-perceived and assessed in a timely manner. The health assessors of multiple sub-functions are fused based on ensemble learning to obtain a macro-level operational function HSA decision. Exemplified with the reactivity function of the NPP, the proposed HAS frame is verified effective.

Key words: industrial system, health status assessment, data fusion, nuclear power plant, state-based maintenance

中图分类号: