[1] 陈俊洵,程龙生,余慧,等.基于EMD-SVD与马田系统的复杂系统健康状态评估[J].系统工程与电子技术,2017,39(7):1542-1548. CHEN Junxun,CHENG Longsheng,YU Hui,et al. Health status assessment for complex systems based on EMD-SVD and Mahalanobis-Taguchi system[J]. Systems Engineering and Electronics,2017,39(7):1542-1548. [2] 孙强,岳继光.基于不确定性的故障预测方法综述[J].控制与决策,2014,29(5):769-778. SUN Qiang,YUE Jiguang. A review of fault prediction methods based on uncertainty[J]. Control and Decision,2014,29(5):769-778. [3] ALASWAD S,XIANG Y. A review on condition-based maintenance optimization models for stochastically deteriorating system[J]. Reliability Engineering&System Safety,2017,157:54-63. [4] 王庆锋,李中,许述剑,等.基于故障案例学习的设备健康评价方法研究[J].机械工程学报,2020,56(20):28-37. WANG Qingfeng,LI Zhong,XU Shujian,et al. Research on equipment health evaluation method based on fault case learning[J]. Journal of Mechanical Engineering,2020,56(20):28-37. [5] 杨敏.液体火箭发动机试验台健康状态评估方法研究[D].哈尔滨:哈尔滨工业大学,2011. YANG Min. Assessment method research of health condition for liquid rocket engine test facilities[D]. Harbin:Harbin Institute of Technology,2011. [6] 金飞.核电厂反应性控制功能健康状态评估方法研究[D].哈尔滨:哈尔滨工程大学,2017. JIN Fei. Research on evaluation methods of reactivity control function's health state for nuclear power plant[D]. Harbin:Harbin Engineering University,2017. [7] 李雪争.核电厂运行健康状态建模与可视化分析[D].天津:天津大学,2017. LI Xuezheng. Modeling for healthy operation state of nuclear power plant and research on visual analysis method[D]. Tianjin:Tianjin University,2017. [8] HU X,LI S E,YANG Y. Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles[J]. IEEE Transactions on Transportation Electrification,2016,2(2):140-149. [9] TOLO S,TIAN X,BAUSCH N,et al. Robust on-line diagnosis tool for the early accident detection in nuclear power plants[J]. Reliability Engineering&System Safety,2019,186:110-119. [10] RAMASSO E,GOURIVEAU R. Remaining useful life estimation by classification of predictions based on a neuro-fuzzy system and theory of belief functions[J]. IEEE Transactions on Reliability,2014,63(2):555-566. [11] 阮羚,谢齐家,高胜友,等.人工神经网络和信息融合技术在变压器状态评估中的应用[J].高电压技术,2014,40(3):822-828. RUAN Ling,XIE Qijia,GAO Shengyou,et al. Application of artificial neural network and information fusion technology in power transformer condition assessment[J]. High Voltage Engineering,2014,40(3):822-828. [12] WANG J,SHI J,HE Q. Research on component-level health quantitative assessment based on SVM algorithm for analog electronic circuits[C]//2015 Prognostics and System Health Management Conference (PHM). 2015:1-5. [13] ZHOU Y,XIAO H,CHEN Z,et al. A dynamic health assessment method for industrial equipment based on SG-FCM clustering algorithm[C]//2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),2019:34-39. [14] 张黎明,赵新文,蔡琦.基于SVM的核动力屏蔽泵老化状态评估[J].核动力工程,2011,32(2):124-127. ZHANG Liming,ZHAO Xinwen,CAI Qi. Aging state evaluation of nuclear power shield pump based on SVM[J]. Nuclear Power Engineering,2011,32(2):124-127. [15] JAVED K,GOURIVEAU R,ZERHOUNI N. A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering[J]. IEEE Transactions on Cybernetics,2015,45(12):2626-2639. [16] 罗家祥,罗丹,胡跃明.带权重变化和决策融合的ELM在线故障检测[J].控制与决策,2018,33(6):1033-1040. LUO Jiaxiang,LUO Dan,HU Yueming. A new online extreme learning machine with varying weights and decision level fusion for fault detection[J]. Control and Decision,2018,33(6):1033-1040. [17] 张文博,姬红兵.融合极限学习机[J].电子与信息学报,2013,35(11):2728-2732. ZHANG Wenbo,JI Hongbing. Fusion of extreme learning machines[J]. Journal of Electronics&Information Technology,2013,35(11):2728-2732. [18] MAHLER R,EBRARY I. Statistical multisource-multitarget information fusion[M]. Boston:Artech House,Inc.,2007. [19] LI H,HUANG H Z,LI Y F,et al. Physics of failure-based reliability prediction of turbine blades using multi-source information fusion[J]. Applied Soft Computing,2018,72:624-635. [20] ZHANG Y,YANG Q. An overview of multi-task learning[J]. National Science Review,2018,5(1):30-43. [21] TAN Z,DE G,LI M,et al. Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine[J]. Journal of Cleaner Production,2020,248:119252. [22] LEE G,YANG E,HWANG S J. Asymmetric multi-task learning based on task relatedness and loss[C]//BALCAN M F,WEINBERGER K Q. International Conference on Machine Learning,48. San Diego:Jmlr-Journal Machine Learning Research,2016. [23] XU J,LI L,JI M. Ensemble learning based multi-source information fusion[C]//SU R. 2019 International Conference on Image and Video Processing,and Artificial Intelligence. Shanghai,China:SPIE,2019:81. |