[1] 韩江义,游有鹏,王化明,等. 夹钳式力反馈遥微操作系统的设计与试验[J]. 机器人,2010,32(2):184-189. HAN Jiangyi,YOU Youpeng,WANG Huaming,et al. Design and experiments of clamp type force-feedback tele-micromanipulation system[J]. Robot,2010,32(2):184-189. [2] 郝永平,董福禄,张嘉易,等. 基于MEMS机构装配的微夹持器研究[J]. 中国机械工程,2014,25(5):596-601. HAO Yongping,DONG Fulu,ZHANG Jiayi,et al. Study on micro-gripper based on MEMS mechanism assembly[J]. China Mechanical Engineering,2014,25(5):596-601. [3] 王立鼎,褚金奎,刘冲,等. 中国微纳制造研究进展[J]. 机械工程学报,2008,44(11):2-12. WANG Liding,CHU Jinkui,LIU Chong,et al. New developments on micro-nano manufacture technology in china[J]. China Mechanical Engineering,2008,44(11):2-12. [4] 陈国良,黄心汉,周祖德. 微装配机器人系统[J]. 机械工程学报,2009,45(2):288-293. CHEN Guoliang,HUANG Xinhan,ZHOU Zude. Micro-assemly robot system[J]. Journal of Mechanical Engineering,2009,45(2):288-293. [5] MASTRANGELI M,ABBASI S,VAREL C,et al. Self-assembly from milli- to nanoscales:methods and applications[J]. Journal of Micromechanics & Microengineering,2009,19(8):083001. [6] HASHIGUCHI H,FUKUSHIMA T,HASHIMOTO H,et al. Self-assembly and electrostatic carrier technology for via-last TSV formation using transfer stacking-based chip-to-wafer 3-D integration[J]. IEEE Transactions on Electron Devices,2017(99):1-8. [7] KURAN E E,BERG Y,TICHEM M,et al. Integration of laser die transfer and magnetic self-assembly for ultra-thin chip placement[J]. Journal of Micromechanics & Microengineering,2015,25(4):045008. [8] SHETYE S B,ESKINAZI I,ARNOLD D P. Self-assembly of millimeter-scale components using integrated micromagnets[J]. IEEE Transactions on Magnetics,2008,44:4293-4296. [9] BARROSO A,LANDWERTH S,WOERDEMANN M,et al. Optical assembly of bio-hybrid micro-robots[J]. Biomedical Microdevices,2015,17(2):1-8. [10] 张聿全. 新型动态光镊技术及应用研究[D]. 天津:南开大学,2015. ZHANG Yuquan. Novel dynamic optical tweezers techniques and applications[D]. Tianjin:Nankai University,2015. [11] ZHOU Q,SARIOLA V,LATIFI K,et al. Controlling the motion of multiple objects on a Chladni plate[J]. Nature Communications,2016,7:12764. [12] MASTRANGELI M,ZHOU Q,SARIOLA V,et al. Surface tension-driven self-alignment[J]. Soft Matter,2016,13(2):304-327. [13] CHANG B,SHAH A,ROUTA I,et al. Surface-tension driven self-assembly of microchips on hydrophobic receptor sites with water using forced wetting[J]. Applied Physics Letters,2012,101(11):114105. [14] FUKUSHIMA T,IWATA E,KONNO T,et al. Surface tension-driven chip self-assembly with load-free hydrogen fluoride-assisted direct bonding at room temperature for three-dimensional integrated circuits[J]. Applied Physics Letters,2010,96(15):359. [15] CHANG B,ZHOU Q,WU Z,et al. Capillary self-alignment of microchips on soft substrates[J]. Micromachines,2016,7(3):41. [16] ARUTINOV G,SMITS E,MASTRANGELI M,et al. Capillary self-alignment of mesoscopic foil components for sensor-systems-in-foil[J]. Journal of Micromechanics & Microengineering,2012,22(11):2549-2557. [17] CHANG B,SHAH A,ZHOU Q,et al. Self-transport and self-alignment of microchips using microscopic rain[J]. Scientific Reports,2015,5:14966. [18] CHANG B,SARIOLA V,AURA S,et al. Capillary-driven self-assembly of microchips on oleophilic/oleophobic patterned surface using adhesive droplet in ambient air[J]. Applied Physics Letters,2011,99(3):083001. [19] CHANG B,JIN J L,ZHOU Q. Surface tension-based alignment of microfibers on hydrophilic- superhydrophobic grooved surfaces[J]. Micromachines,2020,11(11):973. [20] 王乐锋,关楠楠,荣伟彬,等. 一种柔顺转移微米级颗粒的装置及方法:中国,CN103193201A[P]. 2013-07-10. WANG Lefeng,GUAN Nannan,RONG Weibin,et al. Device and method for smoothly transferring micron-level particles:China,CN103193201A[P]. 2013-07-10. [21] 张勤,甘裕明,黄维军,等. 液滴微操作机械手的机理分析与试验[J]. 机器人,2014,36(4):430-435,445. ZHANG Qin,GAN Yuming,HUANG Weijun,et al. Mechanism analysis and experiments of liquid-drop micromanipulator[J]. Robot,2014,36(4):430-435,445. [22] 范增华,荣伟彬,王乐锋,等. 疏水表面冷凝的可控毛细力微对象操作方法与试验[J]. 机器人,2015,37(6):648-654. FAN Zenghua,RONG Weibin,WANG Lefeng,et al. Micromanipulation method and experiments of controllable capillary force based on condensation on hydrophobic surface[J]. Robot,2015,37(6):648-654. [23] FANTONI G,HANSEN H N,SANTOCHI M. A new capillary gripper for mini and micro parts[J]. CIRP Annals- Manufacturing Technology,2013,62(1):17-20. [24] VASUDEV A,ZHE J. A capillary microgripper based on electrowetting[J]. Applied Physics Letters,2008,93(10):103503-103503-3. [25] FUCHIWAKI O,KUMAGAI K. Development of wet tweezers based on capillary force for complex-shaped and heterogeneous micro-assembly[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Nov 3-7,2013,Tokyo,Japan. IEEE,2013:1003-1006. [26] RONG W,LIU T,WANG L. A method for micro-spheres manipulation based on capillary force control[C]//2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics,Aug 26-28,2010,Nanjing,China. IEEE,2010:259-262 [27] CHANG B,SHAH A,ROUTA I,et al. Low-height sharp edged patterns for capillary self-alignment assisted hybrid microassembly[J]. Journal of Micro-Bio Robotics,2014,9(12):1-10. [28] 朱朝飞,常博. 微器件形状对液桥自组装能力的影响[J].陕西科技大学学报,2019,37(1):124-127. ZHU Zhaofei,CAHNG Bo. Influence of micro-device shape on self-assembly ability using liquid bridge[J]. Journal of Shaanxi University of Science and Technology,2019,37(1):124-127. [29] CHANG B,LIU H,RAS R H A,et al. Capillary transport of miniature soft ribbons[J]. Micromachines,2019,10(10):684. [30] LAMBERT P,STEPHANE R. Surface and contact forces models within the framework of microassembly[J]. Journal of Micromechatronics,2006,3(2):123-157. [31] CHANG B,WANG J R,ZHOU Q,et al. Capillary Forces Modeling in Micro/Nano Interactions[C]//International Conference on Integration & Commercialization of Micro & Nanosystems,Jan 10-13,Sanya,Hainan,China. ASME,2007:1005-1015. [32] ISRACLACHVILI J N. Intermolecular and surface forces[J]. Quarterly Review of Biology,2011,2(3):59-65. [33] GBERGSTROM L. Hamaker constants of inorganic materials[J]. Advances in Colloid & Interface Science,1997,70:125-169. [34] WENZEL,ROBERT N. Resistance of solidsurfaces to wetting by water[J]. Transactions of the Faraday Society,1936,28(8):988-994. |