• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (6): 285-294,308.doi: 10.3901/JME.2023.06.285

• 交叉与前沿 • 上一篇    下一篇

扫码分享

基于毛细力的芯片微操作方法研究

王彬开, 常博, 张衡   

  1. 陕西科技大学机电工程学院 西安 710021
  • 收稿日期:2022-03-29 修回日期:2022-09-24 出版日期:2023-03-20 发布日期:2023-06-03
  • 通讯作者: 常博(通信作者),女,1977年生,教授,博士研究生导师。主要研究方向为微纳米操作、微纳米机器人、半导体电子器件以及柔性可拉伸设备的微组装技术。E-mail:changbo@sust.edu.cn
  • 作者简介:王彬开,男,1993年生,博士研究生。主要研究方向为微纳操作机器人、微组装、毛细夹持器。E-mail:BS1805002@sust.edu.cn
  • 基金资助:
    陕西省科学技术厅重点研发国际合作 (2019KW-006)、中国工程院 (2020-XY-043)、陕西省教育厅服务地方专项(20JC009)和陕西省教育厅专项科研计划(18JK0107)资助项目。

Capillary Force Based Micromanipulation of Chips

WANG Binkai, CHANG Bo, ZHANG Heng   

  1. School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021
  • Received:2022-03-29 Revised:2022-09-24 Online:2023-03-20 Published:2023-06-03

摘要: 提出一种基于毛细力的芯片微操作方法,可实现微芯片的精准拾取、释放以及与尺寸匹配的基底的高精度自对齐。开发可精确模拟液桥形态的双迭代算法,求解微芯片操作过程中的拾取力与释放力,深入研究基于毛细力的微芯片的拾取以及释放的机理以及必要条件。研究液滴体积、基底接触角对微芯片拾取力和释放力的影响。结果表明,拾取力和释放力均随液滴体积的增大而增大,释放力随基底接触角的减小而增大。进一步通过试验验证基于毛细力的芯片微操作方法的可行性,研究液滴体积对微芯片操作的影响,并统计微芯片操作的成功率。基于毛细力的微操作方法在软体机器人、微机电系统、可穿戴设备的集成等领域具有潜在应用。

关键词: 微操作, 毛细力, 微组装, 自对齐, 微芯片, 表面张力

Abstract: A capillary force based micromanipulation method was proposed for pick-up, releasing and self-alignment of microchips with the shape matching receptor sites. A double iteration algorithm was developed to simulate the shape of the liquid meniscus, and the pick-up and the releasing forces were analyzed. The mechanism and critical conditions of pick-up and releasing of microchips were further studied. The influence of the volume of the droplet and water contact angle of the receptor sites on the pick-up and releasing force were studied. The results show that the pick-up force and releasing force increase with the increase of the volume of the droplet. The releasing force increases with the decrease of the contact angle on the receptor site. Furthermore, the proposed capillary force based micromanipulation method was demonstrated through experiments and the influence of droplet volume on the assembly of microchips was studied. Finally, the success rate of pick-up and releasing was analyzed statistically. The proposed capillary force based micromanipulation method has great potential in integration of soft robots, micro-electromechanical systems, and wearable devices.

Key words: micromanipulation, capillary force, microasssembly, self-alignment, microchips, surface tension

中图分类号: