[1] GUO Jianxia,HU Changming,BAO Rong. Predicting the duration of a general contracting industrial project based on the residual modified model[J]. KSCE Journal of Civil Engineering,2019,23(8):3275-3284. [2] LIU Fang,ZHENG Lanlan,LI Mingyang,et al. Analysis and prediction of the interval duration between the first and second accidents considering the spatiotemporal threshold[J]. Journal of Advanced Transportation,2022,2022:14. [3] YU Min,FENG Shuwei,YANG Yu. Combined prediction method of marine rainfall with different duration based on mathematical probability and statistics[J]. Journal of Coastal Research,2019,93(sp1):381-387. [4] THOMAS N,THOMAS A. Regression modelling for prediction of construction cost and duration[J]. Applied Mechanics and Materials,2016,857(857):195-199. [5] 裴洪,胡昌华,司小胜,等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报,2019,55(8):1-13. PEI Hong,HU Changhua,SI Xiaosheng,et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering,2019,55(8):1-13. [6] ZHANG Qingchen,YANG L T,CHEN Zhikui,et al. A survey on deep learning for big data[J]. Information Fusion,2018,42:146-157. [7] WANG Jinjiang,MA Yulin,ZHANG Laibin,et al. Deep learning for smart manufacturing:Methods and applications[J]. Journal of Manufacturing Systems,2018,48:144-156. [8] 刘玉敏,张帅. 基于多主元特征与支持向量机的动态过程质量异常监控模型[J]. 计算机集成制造系统,2018,24(3):703-710. LIU Yumin,ZHANG Shuai. Dynamic process quality anomaly monitoring model based on multi principal component feature and support vector machine[J]. Computer Integrated Manufacturing Systems,2018,24(3):703-710. [9] 鲍中新,文成林,马雪. 一种基于数据变化率的预处理及主元分析故障诊断方法[J]. 电子学报,2021,49(11):2234-2240. BAO Zhongxin,WEN Chenglin,MA Xue. Data preprocessing and PCA fault diagnosis method based on rate of change transformation[J]. Acta Electronica Sinica,2021,49(11):2234-2240. [10] 李锵,武昱忻,关欣,等. 基于SRD感受野自调节的肺炎病灶检测[J]. 天津大学学报(自然科学与工程技术版),2021,54(5):508-516. LI Qiang,WU Yuxin,GUAN Xin,et al. Detection of pneumonia focus based on SRD receptive field self-regulation[J]. Journal of Tianjin University(Science and Technology),2021,54(5):508-516. [11] HANSEN L K,SALAMON P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2002,12(10):993-1001. [12] 孟华,孙浩,裴迪,等. 基于聚类及优化集成神经网络的地铁车站空调负荷预测[J]. 同济大学学报(自然科学版),2021,49(11):1582-1589. MENG Hua,SUN Hao,PEI Di,et al. Air-conditioning load prediction of subway station based on clustering and optimization algorithm ensemble neural network[J]. Journal of Tongji University(Natural Science),2021,49(11):1582-1589. [13] 张永峰,陆志强. 基于集成神经网络的剩余寿命预测[J]. 工程科学学报,2020,42(10):1372-1380. ZHANG Yongfeng,LU Zhiqiang. Remaining useful life prediction based on an integrated neural network[J]. Chinese Journal of Engineering,2020,42(10):1372-1380. [14] 闫长斌,汪鹤健,周建军,等. 基于Bootstrap-SVR-ANN算法的TBM施工速度预测[J]. 岩土工程学报,2021,43(6):1078-1087. YAN Changbin,WANG Hejian,ZHOU Jianjun,et al. Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm[J]. Chinese Journal of Geotechnical Engineering,2021,43(6):1078-1087. [15] 张洁,赵新明,张朋,等. 面向火箭总装过程的工期延误预警方法[J]. 上海交通大学学报,2020,54(3):322-330. ZHANG Jie,ZHAO Xinming,ZHANG Peng,et al. Early warning method of construction period delay for rocket assembly process[J]. Journal of Shanghai Jiaotong University,2020,54(3):322-330. [16] 刘道元,郭宇,黄少华,等. 基于DBN-DNN的离散制造车间订单完工期预测方法[J]. 计算机集成制造系统,2020,26(9):2445-2452. LIU Daoyuan,GUO Yu,HUANG Shaohua,et al. Order completion time prediction method for discrete manufacturing workshop based on DBN-DNN[J]. Computer Integrated Manufacturing Systems,2020,26(9):2445-2452. [17] 王燕青,袁逸萍,李晓娟,等. 应用RBF神经网络的订单完成时间(OCT)预测[J]. 机械设计与制造,2020(12):228-231. WANG Yanqing,YUAN Yiping,LI Xiaojuan,et al. Order completion time (OCT) prediction using RBF neural network[J]. Machinery Design & Manufacture,2020(12):228-231. [18] CHANDA S,RAGHUCHARAN M C,REDDY K K,et al. Duration prediction of Chilean strong motion data using machine learning[J]. Journal of South American Earth Sciences,2021,109:103253. [19] 倪维健,孙宇健,刘彤,等. 基于注意力双向循环神经网络的业务流程剩余时间预测方法[J]. 计算机集成制造系统,2020,26(6):1564-1572. NI Weijian,SUN Yujian,LIU Tong,et al. Business process remaining time prediction using bidirectional recurrent netural networks with attention[J],Computer Integrated Manufacturing Systems,2020,26(6):1564-1572. [20] 汪俊亮,张洁. 大数据驱动的晶圆工期预测关键参数识别方法[J]. 机械工程学报,2018,54(23):185-191. WANG Junliang,ZHANG Jie. Big data driven key factor identification for cycle-time forecasting of wafer lots in semiconductor wafer fabrication system[J]. Journal of Mechanical Engineering,2018,54(23):185-191. [21] CHEN T,WANG Yucheng. Enhancing the effectiveness of cycle time estimation in wafer fabrication-efficient methodology and managerial implications[J]. Sustainability,2014,6(8):5107-5128. [22] WU H,CHEN T. CART-BPN approach for estimating cycle time in wafer fabrication[J]. Journal of Ambient Intelligence and Humanized Computing,2015,6(1):57-67. [23] CHEN T. Combining statistical analysis and artificial neural network for classifying jobs and estimating the cycle times in wafer fabrication[J]. Neural Computing and Applications,2015,26(1):223-236. [24] CHEN T. Estimating job cycle time in a wafer fabrication factory:A novel and effective approach based on post-classification[J]. Applied Soft Computing,2016,40:558-568. [25] 王久健,杨绍普,刘永强,等. 一种基于空间卷积长短时记忆神经网络的轴承剩余寿命预测方法[J]. 机械工程学报,2021,57(21):88-95. WANG Jiujian,YANG Shaopu,LIU Yongqiang,et al. A method of bearing remaining useful life estimation based on convolutional long short-term memory neural network[J]. Journal of Mechanical Engineering,2021,57(21):88-95. [26] GAB-ALLAH A A,IBRAHIM A H,HAGRAH O A. Predicting the construction duration of building projects using artificial neural networks[J]. International Journal of Applied Management Science,2015,7(2):123-141. [27] 姜洪权,王岗,高建民,等. 一种适用于高维非线性特征数据的聚类算法及应用[J]. 西安交通大学学报,2017,51(12):49-55+90. JIANG Hongquan,WANG Gang,GAO Jianmin,et al. A clustering algorithm for high-dimensional nonlinear characteristic data and its application[J]. Journal of Xi'an Jiaotong University,2017,51(12):49-55+90. [28] 袁非牛,章琳,史劲亭,等. 自编码神经网络理论及应用综述[J]. 计算机学报,2019,42(1):203-230. YUAN Feiniu,ZHANG Lin,SHI Jinting,et al. Summary of theory and application of self coding neural network[J]. Chinese Journal of Computers,2019,42(1):203-230. [29] 孔祥强,刘晓东,尚燕平,等. 基于多元线性回归直膨式太阳能热泵性能预测[J]. 太阳能学报,2022,43(1):443-449. KONG Xiangqiang,LIU Xiaodong,SHANG Yanping,et al. Performance prediction of DX-SAHP based on multiple linear regression algorithm[J]. Acta Energiae Solaris Sinica,2022,43(1):443-449. [30] 翁剑成,付宇,林鹏飞,等. 基于梯度推进决策树的日维度交通指数预测模型[J]. 交通运输系统工程与信息,2019,19(2):80-85+93. WENG Jiancheng,FU Yu,LIN Pengfei,et al. GBDT method based on prediction model of daily dimension traffic index[J]. Journal of Transportation Systems Engineering and Information Technology,2019,19(2):80-85+93. [31] ZHANG Yali,LI Shan,ZHANG Honghai. Forecast of air traffic controller demand based on SVR and parameter optimization[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2021,38(6):959-966. [32] 何存富,蔡燕超,刘秀成,等. 基于磁巴克豪森噪声的S136钢表面硬度定量预测模型对比[J]. 机械工程学报,2019,55(18):15-21. HE Cunfu,CAI Yanchao,LIU Xiucheng,et al. Comparison of quantitative prediction models of surface hardness of S136 steel based on Magnetic Barkhausen noise[J]. Journal of Mechanical Engineering,2019,55(18):15-21. |