• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (6): 295-309.doi: 10.3901/JME.2023.06.294

• 交叉与前沿 • 上一篇    

扫码分享

多维非线性特征重构与融合的复杂产品工期预测方法

常建涛1, 乔子萱1, 孔宪光1, 杨胜康1, 罗才文2   

  1. 1. 西安电子科技大学机电工程学院 西安 710071;
    2. 成都中电锦江信息产业有限公司 成都 610057
  • 收稿日期:2022-04-20 修回日期:2022-09-10 出版日期:2023-03-20 发布日期:2023-06-03
  • 通讯作者: 常建涛(通信作者),男,1980年出生,博士,副教授,博士研究生导师。主要研究方向为智能制造与数字化制造、工业大数据技术及系统、工业人工智能技术。E-mail:taocj@xidian.edu.cn
  • 作者简介:乔子萱,女,1998年出生。主要研究方向为智能制造与工业大数据技术。E-mail:qiaozx98@stu.xidian.edu.cn;孔宪光,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为面向智能制造的工业大数据与数字孪生技术。E-mail:kongxianguang@xidian.edu.cn;杨胜康,男,1994年出生,博士研究生。主要研究方向为智能制造与工业大数据技术、智能运维技术。E-mail:skyang1@stu.xidian.edu.cn;罗才文,男,1994年出生,硕士。主要研究方向为智能制造与工业大数据技术。E-mail:caiwenluo@qq.com
  • 基金资助:
    陕西省重点研发计划(2020ZDLGY07-08)、陕西省科技重大专项(2019zdzx01-01-02)和国家自然科学基金(51505357)资助项目。

Novel Product Duration Prediction Method of Complicated Product Based on Multi-Dimensional Nonlinear Feature Reconstruction and Fusion

CHANG Jiantao1, QIAO Zixuan1, KONG Xianguang1, YANG Shengkang1, LUO Caiwen2   

  1. 1. School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071;
    2. Chengdu Zhongdian Jinjiang Information Industry Co., Ltd., Chengdu 610057
  • Received:2022-04-20 Revised:2022-09-10 Online:2023-03-20 Published:2023-06-03

摘要: 制造企业复杂产品零部件种类众多、加工和装配工序复杂,质量、工艺、设备等各类数据呈现多维度、多尺度、多噪声等特点,工期的关键影响特征提取难度大,预测精度难以保证。针对上述问题,提出一种多维非线性特征重构与融合的复杂产品工期预测方法,首先提出基于集成堆栈式自编码器的多维非线性特征重构与融合方法并构建相应模型,建立特征间的复杂关联耦合关系,形成工期关键因素特征池;基于深度学习算法构建多维非线性重构与融合的复杂产品工期预测模型,实现复杂产品工期的准确预测。选取某企业断路器和3D打印产品为对象进行工期预测的应用验证和对比分析,本方法的均方根误差平均值为1.28,平均绝对百分比误差平均值为3.01%,与未进行特征重构融合的方法,以及支持向量机、神经网络等方法相比,在精度方面均有提升,方均根误差至少降低了约10.87%,平均绝对百分比误差至少降低了约7.74%,证明所提方法的有效性和实用性。

关键词: 特征重构, 特征融合, 工期预测, 深度神经网络, 集成堆栈式自编码器

Abstract: There are so many species of components for complicated products in manufacturing enterprise, which has complicated machining and assembly processes. And the quality, process, equipment and other types of data has multi-dimensional, multi-scale, multi-noise characteristics, which makes it difficult to accurately predict the duration. To address the issues mentioned above, one kind of complicated product duration prediction method based on multi-dimensional nonlinear feature reconstruction and fusion is proposed. First, multi-dimensional nonlinear feature reconstruction and fusion using integrated Stacked Auto Encoder is performed and the corresponding model is constructed, and a complicated correlation coupling connection between features is built to provide a feature pool comprising critical duration factors. Second, complicated product duration prediction model based on multi-dimensional nonlinear feature reconstruction is built to accomplish the complicated product duration prediction. Finally, the proposed model is applied in enterprises to predict the circuit breakers and 3D printed products’ duration. The mean root mean square error of this method reached 1.28, and the mean absolute percentage error reached 3.01%, which is higher than the accuracy of the method without feature reconstruction and fusion, support vector machine, neural network, and other methods. The root mean square error decreased by at least 10.87%, the mean absolute percentage error decreased by at least 7.74%, demonstrating the usefulness and applicability of this method.

Key words: feature reconstruction, feature fusion, duration prediction, deep neural network, integrated stacked auto encoder

中图分类号: