[1] 伍奎,李润方,刘景浩. 智能化系统的知识表达与推理机制[J].机械工程学报, 2005, 41(5):98-103. WU Kui, LI Runfang, LIU Jinghao. Knowledge express and integrated reasoning mechanism in intelligent system[J]. Chinese Journal of Mechanical Engineering, 2005, 41(5):98-103. [2] ZHANG X L, WANG B J, CHEN X F. Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine[J]. Knowledge-Based Systems, 2015, 89:56-85. [3] 袁胜发,褚福磊,何永勇. 基于网格支持矢量机的涡轮泵多故障诊断[J]. 机械工程学报, 2007, 43(04):152-158. YUAN Shengfa, CHU Fulei, HE Yongyong. Multi-fault diagnosis for turbo-pump based on mesh support vector machines[J]. Chinese Journal of Mechanical Engineering, 2007, 43(4):152-158. [4] 陈果. 滚动轴承早期故障的特征提取与智能诊断[J]. 航空学报, 2009, 30(2):2-367. CHEN Guo. Early bearing failure in feature extraction and intelligent diagnosis[J]. Journal of Aeronautics, 2009, 30(2):2-367. [5] 刘建伟,刘媛,罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7):1921-1930. LIU Jianwei, LIU Yuan, LUO Xionglin. Deep learning research progress[J]. Computer application research, 2014, 31(7):1921-1930. [6] CHERIYADAT A M. Unsupervised feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(1):439-451. [7] RANZATO M, BOUREAU Y L, LECUN Y. Sparse feature learning for deep belief networks[J]. Advances in Neural Information Processing Systems, 2007, 20:1185-1192. [8] SHIN H C, ORTON M R, COLLINS D J, et al. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1930-1943. [9] 雷亚国,贾峰,周昕,等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21):49-56. LEI Yaguo, JIA Feng, ZHOU Xin et al. A deep learning based method for machinery health monitoring with big data[J].Journal of Mechanical Engineering, 2015, 51(21):49-56. [10] 郭亮,高宏力,张一文,等. 基于深度学习理论的轴承状态识别研究[J]. 振动与冲击, 2016, 35(12):166-170. GUO Liang, GAO Hongli, ZHANG Yiwen, et al. Recognition of bearing state research based on deep learning theory[J]. Journal of Virbration and Shock, 2016, 35(12):166-170. [11] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12):3371-3408. [12] 孙文珺,邵思羽,严如强. 基于稀疏自动编码深度神经网络的感应电动机故障诊断[J]. 机械工程学报, 2016, 52(9):65-71. SUN Wenjun, SHAO Siyu, YAN Ruqiang. Induction motor fault diagnosis based on sparse auto-encoder deep neural network[J]. Journal of Mechanical Engineering, 2016, 52(9):65-71. [13] EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the sixth international symposium on micro machine and human science. 1995, 1:39-43. [14] BANKS A, VINCENT J, ANYAKOHA C. A review of particle swarm optimization. Part I:background and development[J]. Natural Computing, 2007, 6(4):467-484. [15] OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381(6583):607-609. [16] KULLBACK S, LEIBLER R A. On information and sufficiency[J]. BPals of Mathematical Statistics, 1951, 22(22):79-86. [17] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[J]. Advances in Neural Information Processing Systems, 2007, 19:153-176. [18] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [19] KENNEDY J. Particle swarm optimization[M]. Encyclopedia of Machine Learning. Springer US, 2011:760-766. [20] LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[J]. Journal of Machine Learning Research, 2009, 10(1):1-40. [21] RANAEE V, EBRAHIMZADEH A, GHADERI R. Application of the PSO-SVM model for recognition of control chart patterns[J]. ISA transactions, 2010, 49(4):577-586. [22] TRELEA I C. The particle swarm optimization algorithm:Convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6):317-325. |