[1] ANDRICACOS P C,UZOH C,DUKOVIC J O,et al. Damascene copper electroplating for chip interconnections[J]. IBM Journal of Research and Development,1998,42(5):567-574. [2] HU C K,HARPER J. Copper interconnections and reliability[J]. Materials Chemistry and Physics,1998,52(1):5-16. [3] EDELSTEIN D,HEIDENREICH J,GOLDBLATT R,et al. Full copper wiring in a sub-0.25/spl mu/m CMOS ULSI technology[C]//IEDM Technical Digest. International Electron Devices Meeting IEDM Technical Digest. Washington,DC,USA:IEEE,2002:773-776. [4] HE M,ZHANG X,NOGAMI T,et al. Mechanism of Co liner as enhancement layer for Cu interconnect gap-fill[J]. Journal of the Electrochemical Society,2013,160:D3040-D3044. [5] MONT F W,ZHANG X,WANG W,et al. Cobalt interconnect on same copper barrier process integration at the 7nm node[C]//IEEE Electron Devices Society. 2017 IEEE International Interconnect Technology Conference (IITC). Hsinchu,Taiwan,China:IEEE,2017:1-3. [6] ZHANG W,BRONGERSMA S,LI Z,et al. Analysis of the size effect in electroplated fine copper wires and a realistic assessment to model copper resistivity[J]. Journal of Applied Physics,2007,101(6):063703. [7] WU W,BRONGERSMA S H,VAN HOVE M,et al. Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions[J]. Applied Physics Letters,2004,84(15):2838-2840. [8] BARMAK K,DARBAL A,GANESH K J,et al. Surface and grain boundary scattering in nanometric Cu thin films:A quantitative analysis including twin boundaries[J]. Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2014,32(6):061503. [9] GRAHAM R L,ALERS G,MOUNTSIER T,et al. Resistivity dominated by surface scattering in sub-50 nm Cu wires[J]. Applied Physics Letters,2010,96(4):042116. [10] BAKLANOV M R,ADELMANN C,ZHAO L,et al. Advanced interconnects:Materials,processing,and reliability[J]. ECS Journal of Solid State Science and Technology,2014,4(1):Y1-Y4. [11] KAPUR P,MCVITTIE J P,SARASWAT K C. Technology and reliability constrained future copper interconnects. I. Resistance modeling[J]. IEEE Transactions on Electron Devices,2002,49(4):590-597. [12] CLARKE J S,GEORGE C,JEZEWSKI C,et al. Process technology scaling in an increasingly interconnect dominated world[C]//Institute of Electrical and Electronics Engineers Inc. 2014 IEEE Symposium on VLSI Technology. Honolulu,HI,USA:IEEE,2014:1-2. [13] TAN C M,ROY A. Electromigration in ULSI interconnects[J]. Materials Science and Engineering:R:Reports,2007,58(1-2):1-75. [14] CHAWLA J S,SUNG S H,BOJARSKI S A,et al. Resistance and electromigration performance of 6 nm wires[C]//IEEE Electron Devices Society. 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC). San Jose,CA,USA:IEEE,2016:63-65. [15] GALL D. Electron mean free path in elemental metals[J]. Journal of Applied Physics,2016,119(8):085101. [16] VARELA PEDREIRA O,CROES K,LESNIEWSKA A,et al. Reliability study on cobalt and ruthenium as alternative metals for advanced interconnects[C]//IEEE Electron Devices Society. 2017 IEEE International Reliability Physics Symposium (IRPS). Monterey,CA,USA:IEEE,2017:6B-2.1-6B-2.8. [17] GRIGGIO F,PALMER J,PAN F,et al. Reliability of dual-damascene local interconnects featuring cobalt on 10 nm logic technology[C]//IEEE Electron Devices Society. 2018 IEEE International Reliability Physics Symposium. Burlingame,CA,USA:IEEE,2018:6E.3-1-6E.3-5. [18] AUTH C,ALIYARUKUNJU A,ASORO M,et al. A 10nm high performance and low-power CMOS technology featuring 3 rd generation FinFET transistors,self-aligned quad patterning,contact over active gate and cobalt local interconnects[C]//IEEE Electron Devices Society. 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco,CA,USA:IEEE,2017:29.21.21-29.21.24. [19] MOFFAT T P,WHEELER D,KIM S-K,et al. Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing[J]. Electrochimica Acta,2007,53(1):145-154. [20] HUANG Q,LYONS T W,SIDES W D. Electrodeposition of cobalt for interconnect application:Effect of dimethylglyoxime[J]. Journal of the Electrochemical Society,2016,163(13):D715-D721. [21] LYONS T,HUANG Q. Effects of cyclohexane- monoxime and dioxime on the electrodeposition of cobalt[J]. Electrochimica Acta,2017,245:309-317. [22] WU J,WAFULA F,BRANAGAN S,et al. Mechanism of cobalt bottom-up filling for advanced node interconnect metallization[J]. Journal of the Electrochemical Society,2019,166(1):D3136-D3141. [23] KONGSTEIN O,HAARBERG G,THONSTAD J. Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I:The influence of current density,pH and temperature[J]. Journal of Applied Electrochemistry,2007,37(6):669-674. [24] KONGSTEIN O E,HAARBERG G M,THONSTAD J. Mass transfer of protons during electrodeposition of cobalt in chloride electrolytes[J]. Journal of the Electrochemical Society,2010,157(6):D335-D340. [25] HU Y,DEB S,LI D,et al. Effects of organic additives on the impurity and grain structure of electrodeposited cobalt[J]. Electrochimica Acta,2021,368:137594. [26] KELLY J,KAMINENI V,LIN X,et al. Annealing and impurity effects in Co thin films for MOL contact and BEOL metallization[J]. Journal of the Electrochemical Society,2018,166(1):D3100. [27] LEE C,BONEVICH J,DAVIES J,et al. Superconformal electrodeposition of Co and Co-Fe alloys using 2-mercapto-5-benzimidazolesulfonic acid[J]. Journal of the Electrochemical Society,2009,156:D301-D309. [28] MENDOZA-HUIZAR L H,ROBLES J,PALOMAR-PARDAVE M. Theoretical and experimental study of cobalt nucleation and growth onto gold substrate with different crystallinity[J]. Journal of the Electrochemical Society,2005,152(5):C265. [29] CHENG Z,CHEN C,HUANG J,et al. Nondestructive grafting of PEI on aramid fiber surface through the coordination of Fe (Ⅲ) to enhance composite interfacial properties[J]. Applied Surface Science,2017,401:323-332. [30] HUANG Q,LYONS T,SIDES W. Electrodeposition of cobalt for interconnect application:Effect of dimethylglyoxime[J]. Journal of the Electrochemical Society,2016,163:D715-D721. [31] AROYO M. Theoretical & practical aspects of electrodeposition of metal coatings with improved properties (Part 1)[J]. Plating and Surface Finishing,1998,85(8):69-76. [32] VICENZO A,CAVALLOTTI P L. Growth modes of electrodeposited cobalt[J]. Electrochimica Acta,2004,49(24):4079-4089. [33] TSYNTSARU N,CESIULIS H,PELLICER E,et al. Structural,magnetic,and mechanical properties of electrodeposited cobalt-tungsten alloys:Intrinsic and extrinsic interdependencies[J]. Electrochimica Acta,2013,104:94-103. [34] CéSAR M,LIU D,GALL D,et al. Calculated resistances of single grain boundaries in copper[J]. Physical Review Applied,2014,2(4):044007. [35] DOUBINA N V,SPURLIN T A,OPOCENSKY E C,et al. The effect of thermal annealing on cobalt film properties and grain structure[J]. MRS Advances,2020,5(37-38):1919-1927. [36] ZHANG Z,WU Y,ZHANG Y,et al. Competitive effect of leveler's electrochemical behavior and impurity on electrical resistance of electroplated copper[J]. Journal of the Electrochemical Society,2019,166(13):D577. [37] CASAS J,ALVAREZ F,CIFUENTES L. Aqueous speciation of sulfuric acid-cupric sulfate solutions[J]. Chemical Engineering Science,2000,55(24):6223-6234. [38] TAN L,HAN S,CHEN S,et al. The influence of leveler on the impurity behavior of electroplated Cu films during laser annealing[J]. Journal of the Electrochemical Society,2021,168(6):062504. |