[1] BHADESHIA H K D H. Steels for bearings[J]. Progress in Materials Science,2012,57(2):268-435. [2] 杨志南,赵晓洁,张福成,等. 加速贝氏体相变研究方法综述[J]. 燕山大学学报,2018,42(6):471-478. YANG Zhinan,ZHAO Xiaojie,ZHANG Fucheng,et al. Review of accelerated bainite transformation research methods[J]. Journal of Yanshan University,2018,42(6):471-478. [3] WANG Yanhui,YANG Zhinan,ZHANG Fucheng,et al. Microstructures and mechanical properties of surface and center of carburizing 23Cr2Ni2Si1Mo steel subjected to low-temperature austempering[J]. Materials Science and Engineering:A,2016,670:166-177. [4] CRUZ J A D,RODRIGUES T F M,VIANA V D C, et al. Bainite formation at low temperatures in high C-Si steel and its mechanical behavior[J]. Materials Science Forum,2012,706-709(8):173-180. [5] SOURMAIL T,SMANIO V. Low temperature kinetics of bainite formation in high carbon steels[J]. Acta Materialia,2013,61(7):2639-2648. [6] ZHANG Fucheng,WANG Tiansheng,ZHANG Peng,et al. A novel method for the development of a low temperature bainitic microstructure in the surface layer of low-carbon steel[J]. Scripta Materialia,2008,59(3):294-296. [7] LIU Hongji,SUN Junjie,JIANG Tao,et al. Improved rolling contact fatigue life for an ultrahigh carbon steel with nanobainitic microstructure[J]. Scripta Materialia,2014,90-91:17-20. [8] SOLANO-ALVAREZ W,PICKERING E J,BHADESHIA H K D H. Degradation of nanostructured bainitic steel under rolling contact fatigue[J]. Materials Science and Engineering:A,2014,617(3):156-164. [9] WANG Yanhui,ZHANG Fucheng,YANG Zhinan,et al. Rolling contact fatigue performances of carburized and high-C nanostructured bainitic steels[J]. Materials,2016,9(12):960. [10] YANG Jian,WANG Tiansheng,ZHANG Bing,et al. Sliding wear resistance and worn surface microstructure of nanostructured bainitic steel[J]. Wear,2012,282-283:81-84. [11] CABALLERO F G,BHADESHIA H K D H,MAWELLA K J A,et al. Very strong low temperature bainite[J]. Materials Science and Technology,2002(18):279-284. [12] El FALLAH G M A M,BHADESHIA H K D H. Tensile behaviour of thermally-stable nanocrystalline bainitic-steels[J]. Materials Science and Engineering:A,2019,746(11):145-153. [13] ZHAO Jiali,LV Bo,ZHANG Fucheng,et al. Effects of austempering temperature on bainitic microstructures and mechanical properties of a high-C high-Si steel[J]. Materials Science and Engineering:A,2019,742:179-189. [14] 苏丽婷,张福成,郑春雷,等. 热处理工艺和充氢对GCr15SiMoAl轴承钢压缩性能的影响[J]. 材料热处理学报,2017,38(2):111-117. SU Liting,ZHANG Fucheng,ZHENG Chunlei,et al. Effect of heat treatment process and hydrogen filling on compression properties of GCr15SiMoAl bearing steel[J]. Journal of Material Heat Treatment,2017,38(2):111-117. [15] SOURMAIL T,CABALLERO F G,GARCIAMATEO C,et al. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications[J]. Materials Science & Technology,2013,29(10):1166-1173. [16] 谭谆礼,高博,高古辉,等. 国内外贝氏体钢轨的研发现状[J]. 金属热处理,2018,43(4):10-18. TAN Zhunli,GAO Bo,GAO Guhui,et al. Research and development status of bainite rail at home and abroad[J]. Metal Heat Treatment,2018,43(4):10-18. [17] 杨志南,秦羽满,武东东,等. 一种新型纳米贝氏体渗碳轴承钢研究[C]//第十一届中国钢铁年会论文集. 北京:中国金属学会,2017. YANG Zhinan,QIN Yuman,WU Dongdong,et al. Study on a new type of nano-bainitic carburized bearing steel[C]//Proceedings of the 11th China Iron and Steel Annual Conference. Beijing:China Metal Society, 2017. [18] 赵敬. 高碳轴承钢纳米贝氏体组织与性能的研究[D]. 秦皇岛:燕山大学,2013. ZHAO Jing. Microstructure and properties of nano-bainite in high carbon bearing steel[D]. Qinhuangdao:Yanshan University,2013. [19] 中华人民共和国国家质量监督检验检疫总局,中华人民共和国标准化管理委员会. GB/T 3203-2016:轴承用渗碳钢[S]. 北京:中国标准出版社,2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 3203-2016:Carburizing steels for bearing[S]. Beijing:Standards Press of China,2017. [20] 中华人民共和国工业和信息化部. YB/T 4572-2016:轴承钢辗轧环件及毛坯[S]. 北京:冶金工业出版社,2017. Ministry of Industry and Information Technology of the People's Republic of China. YB/T 4572-2016:Bearing steel rolling ring and blank[S]. Beijing:Metallurgical Industry Press,2017. [21] VETTERS H,DONG J,BORNAS H,et al. Microstructure and fatigue strength of the roller-bearing steel 100Cr6(SAE 52100) after two-step bainitisation and combined bainitic-martensitic heat treatment[J]. International Journal of Materials Research,2006,97:432-1440. [22] CHU Chunhe,QIN Yuman,LI Xuemei,et al. Effect of two-step austempering process on transformation kinetics of nanostructured bainitic steel[J]. Materials,2019,12(1):166. [23] DE A,MURDOCK D,MATAYA M. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction[J]. Scripta Materialia,2004,50(12):1445-1449. [24] RAVI A M,SIETSMA J,SANTOFIMIA M J. Bainite formation kinetics in steels and the dynamic nature of the autocatalytic nucleation process[J]. Scripta Materialia,2017,140:82-86. [25] JIANG Haitao,TANG Di,LIU Qiang,et al. Investigation of retained austenite and its stabilization in trip steel[J]. Shanghai Metals,2007,42(8):60-63. [26] GARCÍA-MATEO C,CABALLERO F G,BHADESHIA H K D H. Acceleration of low-temperature bainite[J]. ISIJ International,2003,43(11):285-288. [27] XIONG Xiaochuan,CHEN Bo,HUANG Mingxin,et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia,2013,68(5):321-324. [28] EDMONDS D V,COCHRANE R C. Structure-property relationships in bainitic steels[J]. Metallurgical Transaction A,1990,21(6):1527-1540. [29] BHADESHIA H K D H,EDMONDS D V. Bainite in silicon steels:New composition-property approach. Part 1[J]. Metal Science,1983,17(9):411-419. [30] BHADESHIA H K D H,EDMONDS D V. Bainite in silicon steels:New composition-property approach. Part 2[J]. Metal Science,1983,17(9):420-425. [31] 李龙,苏光,李晓滨. 低碳铁素体贝氏体复相钢的组织特征及强韧性[J]. 热加工工艺,2017,46(15):81-85. LI Long,SU Guang,LI Xiaobin. Microstructure characteristics and strength and toughness of low carbon ferrite bainitic multiphase steel[J]. Thermal Processing Technology,2017,46(15):81-85. [32] 史园园,胡峰. 残留奥氏体对中碳双相钢冲击性能的影响[J]. 中国冶金,2015,25(1):21-25.SHI Yuanyuan,HU Feng. Influence of residual austenite on impact performance of medium carbon duplex steel[J]. China Metallurgy,2015,25(1):21-25. [33] CLARKE A J,SPEER J G,MILLER M K,et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process:A critical assessment[J]. Acta Materialia,2008,56(1):16-22. [34] SHIMANURA J,OTA S,YASUDA K,et al. Ductile fracture behavior of bainite and martensite dual-phase steel[J]. Science and Technology of Water Steel,2017,56(12):2304-2312. [35] LI Junbo,ZHANG Jian,LI Qiuhe,et al. The effect of an austenitizing pretreatment on the morphology and distribution of the retained austenite and mechanical properties of TRIP590 steel[J]. Journal of Materials Science,2018,53(22):15667-15678. [36] KUMAR A,SINGH S B,RAY K K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels[J]. Materials Science & Engineering A (Structural Materials:Properties,Microstructure and Processing),2008,474(1-2):270-282. [37] GELLER Y A,BUSURINA I A. Stability of residual austenite in hypereutectoid steels[J]. Metal Science & Heat Treatment of Metals,1962,4(5-6):252-255. |