[1] XI Jinping. Speech at the united nations summit on biodiversity[EB/OL]. (2020-09-30)[2022-07-08]. http://china.cnr.cn/news/20201001/t20201001_525284740.shtml. 习近平. 在联合国生物多样性峰会上的讲话[EB/OL]. (2020-09-30)[2022-07-08]. http://china.cnr.cn/news/20201001/t20201001_525284740.shtml. [2] National Bureau of Statistics. Statistical bulletin of the People's Republic of China on national economic and social development in 2020[J]. China Statistics, 2021(3): 8-22. 国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[J]. 中国统计, 2021(3): 8-22. [3] China Heat Treatment Industry Association. Outline of the 14th five year plan for the development of China's heat treatment industry[J]. Heat Treatment of Metals, 2021, 46(1): 239. 中国热处理行业协会. 中国热处理行业"十四五"发展规划纲要[J]. 金属热处理, 2021, 46(1): 239. [4] FANG Weiguang, GUO Yu, HUANG Shaohua, et al. Research on intelligent control method of production process in discrete manufacturing workshop driven bybig data[J]. Journal of Mechanical Engineering, 2021, 57(20): 277-291. 方伟光, 郭宇, 黄少华, 等. 大数据驱动的离散制造车间生产过程智能管控方法研究[J]. 机械工程学报, 2021, 57(20): 277-291. [5] ZHANG Chaoyang, JI Weixi. Research on energy saving method of data-driven machine tool waiting process[J]. China Mechanical Engineering, 2020, 31(12): 1492-1499. 张朝阳, 吉卫喜. 数据驱动的机床等待过程节能方法研究[J]. 中国机械工程, 2020, 31(12): 1492-1499. [6] XIAO Q, LI C, TANG Y, et al. Energy efficiency modeling for configuration-dependent machining via machine learning: A comparative study[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18: 717-730. [7] LÜ Jingxiang, TANG Renzhong, ZHEN Jun. Data-driven methodology for energy consumption prediction of turning and drilling processes[J]. Computer Integrated Manufacturing Systems, 2020, 26(8): 2073-2082. 吕景祥, 唐任仲, 郑军. 数据驱动的车削和钻削加工能耗预测[J]. 计算机集成制造系统, 2020, 26(8): 2073-2082. [8] MOLDOVAN D, SLOWIK A. Energy consumption prediction of appliances using machine learning and multi-objectivebinary grey wolf optimization for feature selection[J]. Applied Soft Computing Journal, 2021(4): 107745. [9] YI Qian, LIU Chun, LI Congbo, et al. Low carbon optimization decision method of hobbing process parameters based on small sample data drive[J/OL]. China Mechanical Engineering. 1-15. http://kns.cnki.net/kcms/detail/42.1294.TH.20220328.1210.004.html 易茜, 柳淳, 李聪波, 等. 基于小样本数据驱动的滚齿工艺参数低碳优化决策方法[J/OL]. 中国机械工程: 1-15[2022-06-26]. http://kns.cnki.net/kcms/detail/42.1294.TH.20220328.1210.004.html [10] LU Chunguang, MEI Guojun, LIN Shengxiu, et al. Optimization of heat treatment process for 3379ba1 turbine blade steel[J]. Heat Treatment of Metals, 2021, 46(11): 199-201. 卢春光, 梅国俊, 林生秀, 等. 3379BA1汽轮机叶片钢的热处理工艺优化[J]. 金属热处理, 2021, 46(11): 199-201. [11] DING F, JIA X, HONG T. Flow stress prediction model of 6061 aluminum alloy sheet based on GA-BP and PSO-BP neural networks[J]. Rare Metal Materials and Engineering, 2020, 6: 1840-1853. [12] LIN Y, ZHENG Z, ZHENG H, et al. Effect of heat treatment process on tensile properties of 2A97 Al-Li alloy: Experiment and BP neural network simulation[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1728-1736. [13] SCHARF S, BERGEDIECK N, RIEDEL E, et al. Unlocking sustainability potentials in heat treatment processes[J]. Sustainability, 2020, 12(16), 6457. [14] FANG Haiquan, XUE Huifeng, LI Ning, et al. Boiler combustion optimization based on Bayesian neural network genetic algorithm[J]. Journal of System Simulation, 2015, 27(8): 1790-1795. 方海泉, 薛惠锋, 李宁, 等. 基于贝叶斯神经网络遗传算法的锅炉燃烧优化[J]. 系统仿真学报, 2015, 27(8): 1790-1795. [15] DRAGOLJUB G, IVANA S, IVAN S. Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks[J]. Energy, 2016, 108: 132-139. [16] IÑIGO B, NEREA N, LUIS P, et al. Energy efficiency assessment: Process modelling and waste heat recovery analysis[J]. Energy Conversion and Management, 2019, 196: 1180-1192. [17] WANG Weilin, TONG Xiaohui, WU Jinjun, et al. Research and consideration on pollution production coefficient of metal heat treatment process[J]. Heat Treatment of Metals, 2020, 45(4): 5-9. 王伟琳, 佟晓辉, 吴进军, 等. 金属热处理工艺产污系数研究与思考[J]. 金属热处理, 2020, 45(4): 5-9. [18] DENG Zhaohui, LÜ Lishu, FU Yahui, et al. Research on carbon emission assessment and emission reduction strategy of machine tool parts life cycle[J]. Journal of Mechanical Engineering, 2017, 53(11): 144-156. 邓朝晖, 吕黎曙, 符亚辉, 等. 机床零部件生命周期碳排放评估与减排策略研究[J]. 机械工程学报, 2017, 53(11): 144-156. [19] ZHANG Lei, ZHANG Beikun, BAO Hong, et al. Quantitative method of carbon emission from product melting deposition manufacturing[J]. Journal of Mechanical Engineering, 2017, 53(5): 50-59. 张雷, 张北鲲, 鲍宏, 等. 产品熔融沉积制造的碳排放量化方法[J]. 机械工程学报, 2017, 53(5): 50-59. [20] ZHU Shuo, ZHANG Hua, JIANG Zhigang. Dynamic energy efficiency acquisition method of multi-resolution entity in machining process unit[J]. Journal of Mechanical Engineering, 2019, 55(1): 160-171. 朱硕, 张华, 江志刚. 机械加工工艺单元多分辨率实体动态能效获取方法[J]. 机械工程学报, 2019, 55(1): 160-171. [21] SCHALTEGGER S, STURM A. Kologische rationalilitt approaches to the design of ecologyoriented management instruments[J]. The company, 1990(4): 273-290. [22] CAO Huajun, LI Hongcheng, CHENG Haiqin, et al. A carbon efficiency approach for life-cycle carbon emission characteristics of machine tools[J]. Journal of Cleaner Production, 2012, 37: 19-28. [23] LI Congbo, ZHU Yantao, LI Li, et al. Energy efficiency oriented multi-objective optimization model of NC milling parameters[J]. Journal of Mechanical Engineering, 2016, 52(21): 120-129. 李聪波, 朱岩涛, 李丽, 等. 面向能量效率的数控铣削加工参数多目标优化模型[J]. 机械工程学报, 2016, 52(21): 120-129. [24] BURDEN F, WINKLER D A. Robust QSAR models using Bayesian regularized neural networks[J]. Journal of Medicinal Chemistry, 1999, 42: 3183-3187. [25] DHIMAN G, SINGH K K, SONI M, et al. MOSOA: A new multi-objective seagull optimization algorithm[J]. Expert Systems with Applications, 2021, 167: 114150. |