[1] JIA Z,LI T,CHIANG F P,et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology,2018,154:53-63. [2] FRIEDRICH K,ALMAJJD A A. Manufacturing aspects of advanced polymer composites for automotive applications[J]. Applied Composite Materials,2013, 20(2):107-128. [3] SARTORAT M,DE MEDEIROS R,TITA V A. Finite element formulation for smart piezoelectric composite shells:mathematical formulation,computational analysis and experimental evaluation[J]. Composite Structures,2015,127:185-198. [4] DENKENA B,SCHMIDT C,VOLTZER K,et al. Thermographic online monitoring system for automated fiber placement processes[J]. Composites Part B:Engineering,2016,97:239-243. [5] 王显峰,张育耀,赵聪,等. 复合材料自动铺丝设备研究现状[J]. 航空制造技术,2018,61(14):83-90. WANG Xianfeng,ZHANG Yuyao,ZHAO Cong,et al. Research status of automatic fiber placement equipment for composite materials[J]. Aeronautical Manufacturing Technology,2018,61(14):83-90. [6] SUN S Z,HAN Z Y,FU H Y,et al. Defect characteristics and online detection techniques during manufacturing of FRPs using automated fiber placement:A review[J]. Polymers,2020,12(6):1337. [7] CROFT K,LESSARD L,PASINI D,et al. Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates[J]. Composites Part a-Applied Science and Manufacturing. 2011,42(5):484-491. [8] CHU Q Y,LI Y,XIAO J,et al. Processing and characterization of the thermoplastic composites manufactured by ultrasonic vibration-assisted automated fiber placement[J]. Journal of Thermoplastic Composite Materials. 2018; 31(3):339-358. [9] 曹忠亮,富宏亚,付云忠,等. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报,2019,33(5):894-900. CAO Zhongliang,FU Hongya,FU Yunzhong,et al. A review of robotic prepreg placement and in-situ consolidation for manufacturing fiber-reinforced thermoplastic composites:heat transfer behavior and interlaminar properties[J]. Materials Reports,2019,33(5):894-900. [10] ZACHARY A,GRAHAM O,JOHN M,et al. Recent developments in automated fiber placement of thermoplastic composites[J]. SAMPE Journal,2014,50(2):30-35. [11] 韩振宇,孙守政,付云忠,等. 热塑性FRP自动铺放成型缺陷的多尺度研究进展[J]. 材料工程,2017,45(7):118-127. HAN Zhenyu,SUN Shouzheng,FU Yunzhong,et al. Multi-scale research progress of manufacturing defects for thermoplastic FRP fabricated by automated fiber placement[J]. Journal of Materials Engineering,2017,45(7):118-127. [12] 张婷. 高性能热塑性复合材料在大型客机结构件上的应用[J]. 航空制造技术,2013,435(15):32-35. ZHANG Ting. Applications of high performance thermoplastic composites for commercial airplane structural component[J]. Aeronautical Manufacturing Technology,2013,435(15):32-35. [13] 郑广强,姚锋,周晓芹. 自动铺丝技术及其在A350制造过程中的应用[J]. 航空制造技术,2017,535(16):76-82. ZHENG Guangqiang,YAO Feng,ZHOU Xiaoqin. Application of automatic fiber placement technology in A350 manufacturing[J]. Aeronautical Manufacturing Technology,2017,535(16):76-82. [14] BANDARU A K,CLANCY G,PEETERS D,et al. Properties of a thermoplastic composite skin-stiffener interface in a stiffened structure manufactured by laser-assisted tape placement with in situ consolidation[J]. Composite Structures,2019,214:123-131. [15] STOKES-GRIFFIN C M,COMPSTON P. The effect of processing temperature and placement rate on the short beam strength of carbon fibre-PEEK manufactured using a laser tape placement process[J]. Composites Part A:Applied Science and Manufacturing,2015,78:274-283. [16] 宋清华,肖军,文立伟,等.热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报,2016,33(6):1214-1222. SONG Qinghua,XIAO Jun,WEN Liwei,et al. Automated fiber placement system technology for thermoplastic composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1214-1222. [17] 宋清华,刘卫平,肖军,等.热塑性复合材料自动铺放过程中红外加热技术研究[J]. 材料工程,2019,47(1):77-83. SONG Qinghua,LIU Weiping,XIAO Jun,et al. Infrared heating system based on automated fiber placement for thermoplastic composites[J]. Journal of Materials Engineering,2019,47(1):77-83. [18] 宋清华,刘卫平,刘小林,等.热塑性复合材料原位成型过程铺层间结合强度[J]. 航空学报,2019,40(4):259-267. SONG Qinghua,LIU Weiping,LIU Xiaolin,et al. Interlaminar bonding strength for thermoplastic composite in an in-situ consolidation process[J]. Acta Aeronautica et Astronautica Sinica,2019,40(4):259-267. [19] 高士杰. PEEK热塑性复合材料纤维铺放工艺研究[D]. 哈尔滨:哈尔滨工业大学,2018. GAO Shijie. Study on the process of PEEK thermoplastic composites automated fiber placement[D]. Harbin. Harbin Institute of Technology,2018. [20] 咸梦蝶,闫宝瑞,信春玲,等.热塑性复合材料自动铺放成型工艺[J]. 塑料,2017,46(5):66-68,80. XIAN Mengdie,YAN Baorui,XIN Chunling,et al. Processing of automatic placement of thermoplastic composite[J]. Plastics,2017,46(5):66-68,80. [21] 孙银宝,李宏福,张博明. 连续纤维增强热塑性复合材料研发与应用进展[J]. 航空科学技术,2016, 27(5):1-7. SUN Yinbao,LI Hongfu,ZHANG Boming. Progress in research and application of continuous fiber reinforced thermoplastics composites[J]. Aeronautical Science and Technology,2016,27(5):1-7. [22] 肇研,刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程,2020,48(8):49-61. ZHAO Yan,LIU Hansong. Preparation and application of continuous fiber reinforced high-performance thermoplastic composites[J]. Journal of Materials Engineering,2020,48(8):49-61. [23] 杨洋,徐捷,原崇新,等. 连续纤维增强聚苯硫醚预浸料自动铺丝工艺与热塑性复合材料性能研究[J]. 纤维复合材料,2020,37(1):3-9. YANG Yang,XU Jie,YUAN Chongxin,et al. Study on automatic fiber placement technology with continuous carbon fiber reinforced polyphenylene sulfide prepreg and characterization of the thermoplastic composites[J]. Fiber Composites,2020,37(1):3-9. [24] 赵聪,肖军,王显峰,等. 丝束张力对自动铺丝成型工艺的影响[J]. 航空学报,2016,37(4):1384-1392. ZHAO Cong,XIAO Jun,WANG Xianfeng,et al. Effects of tows tension on automated fiber placement process[J]. Acta Aeronautica et Astronautica Sinica,2016,37(4):1384-1392. [25] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料短梁法测定层间剪切强度:JC/T 773-2010[S]. 北京:中国标准出版社,2010. Fiber reinforced plastic of standardization administration of china. fibre-reinforced plastics composites- determination of apparent interlaminar shear strength by short-beam method:JC/T 773-2010[S]. Beijing:China Standards Press,2010. [26] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料弯曲性能试验方法:GB/T 1449-2005[S]. 北京:中国标准出版社,2005. Fiber reinforced plastic of standardization administration of china. fibre-reinforced plastic composites- determination of flexural properties:GB/T 1449-2005[S]. Beijing:China Standards Press,2005. [27] CHEN G C,ZHANG L F,WANG Z,et al. Optimization of a green process for the extraction of nanofibril from windmill palm fiber using response surface methodology (RSM)[J]. Materials Research Express,2019,6(2):025037. [28] MABOUD A A G A,EL-MAHALLAWY N A,ZOALFAKER S H. Process parameters optimization of friction stir processed Al 1050 aluminum alloy by response surface methodology (RSM)[J]. Materials Research Express,2019,6(2):026527. [29] MIRZAEI M,SABBAGHI S,ZERAFAT M M. Photo-catalytic degradation of formaldehyde using nitrogen-doped TiO2 nano-photocatalyst:Statistical design with response surface methodology (RSM)[J]. Canadian Journal of Chemical Engineering,2018,96(12):2544-2552. [30] MAZHARI M P,HAMADANIAN M. Preparation and characterization of Fe3O4@SiO2@TiO2 and Ag/Fe3O4@SiO2@TiO2 nanocomposites for water treatment:Process optimization by response surface methodology[J]. Journal of Electronic Materials,2018,47(12):7484-7496. |