• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (23): 195-208.doi: 10.3901/JME.2021.23.195

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于电场驱动喷射微3D打印的大面积微透镜阵列制造研究

李红珂1, 胡玉杰1, 朱晓阳1, 兰红波1, 李政豪1, 杨建军1, 章圆方2, 彭子龙1, 李宗安3, 杨继全3   

  1. 1. 青岛理工大学山东省增材制造工程技术研究中心 青岛 266520;
    2. 新加坡科技与设计大学数字制造与设计中心 新加坡 487372 新加坡;
    3. 南京师范大学电气与自动化工程学院 南京 210046
  • 收稿日期:2020-12-25 修回日期:2021-07-23 出版日期:2021-12-05 发布日期:2022-02-28
  • 通讯作者: 朱晓阳(通信作者),男,1988年出生,博士,副教授,博士研究生导师。主要研究方向为微尺度3D打印工艺及装备研发、微光学器件的设计与制造、透明导电薄膜以及柔性电子3D打印。E-mail:zhuxiaoyang@qtech.edu.cn
  • 作者简介:李红珂,男,1992年出生,博士研究生。主要研究方向为3D打印与微纳制造。E-mail:lhk1164072308@163.com;兰红波,男,1970年出生,博士,教授,博士研究生导师。主要研究方向为微纳尺度3D打印、复合材料3D打印、多材料3D打印、大面积纳米压印光刻、微纳制造。E-mail:hblan99@126.com
  • 基金资助:
    国家自然科学基金(51705271,51775288)、山东省高等学校青创科技支持计划(2020KJB003)和山东省重点研发(2019GGX104060)资助项目。

Fabrication of Larger-area Microlenses Arrays Based on Electric-field-driven Jet Micro-scale 3D Printing Technology

LI Hongke1, HU Yujie1, ZHU Xiaoyang1, LAN Hongbo1, LI Zhenghao1, YANG Jianjun1, ZHANG Yuanfang2, PENG Zilong1, LI Zongan3, YANG Jiquan3   

  1. 1. Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520;
    2. Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 487372 Singapore;
    3. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046
  • Received:2020-12-25 Revised:2021-07-23 Online:2021-12-05 Published:2022-02-28

摘要: 大面积圆形、柱状及梯度折射率微透镜阵列在裸眼3D、光学传感、仿生学、医疗内窥镜等领域具有非常广泛的需求,然而,如何实现大面积多类型微透镜阵列的简单化、低成本、高效率制造是学术界与产业界共同面临的一项挑战性难题。基于电场驱动喷射微3D打印技术,提出了一种可实现大面积多类型微透镜阵列制备的新方法,通过实验揭示了主要工艺参数(电压、气压,打印速度)对制备的不同类型微透镜形貌与质量的影响与规律,利用提出的方法并结合优化的工艺参数,在玻璃基底上分别实现了面积为120 mm×120 mm、100 cm×45 cm的圆形与柱状微透镜阵列的制造,在柔性PET基底上实现了面积为160 mm×160 mm的圆形微透镜阵列的制造,利用电场驱动喷射微3D打印的多层打印模式实现了折射率梯度变化范围为0.1的梯度折射率微透镜阵列的制造。实验结果表明,制备的微透镜阵列具有良好的几何与光学性能,基于电场驱动喷射微3D打印大面积、多类型微透镜阵列制造方法具有效率高、成本低、批量化的显著优势,为大面积多类型微透镜阵列制造提供了一种全新的解决方案。

关键词: 大面积微透镜阵列, 电场驱动喷射微3D打印, 圆形微透镜, 柱状微透镜, 梯度折射率微透镜

Abstract: Large-area circular, cylindrical and gradient index microlens arrays (MLAs) have a wide range of applications in naked-eye 3D, optical sensing, bionics and medical endoscopes. However, simplification, low-cost, and high-efficiency manufacturing of large-area and multi-type MLAs still remains challenges in academia and industry. A novel large-area and multi-type MLAs fabrication method based on electric-field-driven jet micro-scale 3D printing technology is proposed. A series of experiments are conducted to reveal the influence law of process parameters (driving voltage, air pressure, printing speed) for the fabricated MLAs with different types. As results, the success fabrication of circular MLA with area of 120 mm×120 mm and cylindrical MLA with area of 100 cm×45 cm on glass substrates can be achieved easily via the proposed method and the optimized process parameters. Large area circular MLA can also be fabricated on flexible PET substrate with printing area of 160 mm×160 mm. Moreover, the fabrication of gradient index MLAs with the gradient of refractive index of 0.1 can be realized through multi-layer printing mode of electric-field-driven jet micro-scale 3D printing. All the fabricated large-area MLAs have good geometric and optical properties. The proposed technique is a promising novel tool for the inexpensive and widely-suited fabrication method of large area and multi-type MLAs, which provides a brand-new solution for MLA manufacturing.

Key words: large-area microlens arrays, electric-field-driven jet 3D printing, circular microlens, cylindrical microlens, gradient index microlens

中图分类号: