机械工程学报 ›› 2024, Vol. 60 ›› Issue (8): 186-195.doi: 10.3901/JME.2024.08.186
谢晨阳1, 黄鲛2, 肖光明3, 张贤杰1, 王俊彪1, 李玉军1,3
收稿日期:
2023-03-14
修回日期:
2023-09-24
出版日期:
2024-04-20
发布日期:
2024-06-17
作者简介:
谢晨阳,男,1999年出生。主要研究方向为复合材料制造及力学。E-mail:XieCy@mail.nwpu.edu.cn;李玉军(通信作者),男,1987年出生,博士,副教授。主要研究方向为复合材料制造工艺力学、复合材料多尺度损伤与断裂。E-mail:li.yujun@nwpu.edu.cn
基金资助:
XIE Chenyang1, HUANG Jiao2, XIAO Guangming3, ZHANG Xianjie1, WANG Junbiao1, LI Yujun1,3
Received:
2023-03-14
Revised:
2023-09-24
Online:
2024-04-20
Published:
2024-06-17
摘要: 提出一种单向纤维增强复合材料(Unidirectional fiber reinforced polymer,UD-FRP)周期性高保真代表性体积元(Representative volume element,RVE)的创建算法。首先基于随机游走算法,采用贝塞尔(Bézier)曲线表征纤维形态,使曲线各控制点处的切线方向的统计分布服从多变量冯·米塞斯-费歇尔(Von-MISES FISCHER)函数,创建出初步的软核模型。进而基于力偏置算法,在保证RVE内部纤维不产生过度扭曲的前提下,调整纤维间的重叠,创建出对应的硬核模型。调整过程中,通过引入三维近邻列表算法,大幅提高算法效率。最后对所创建的含有纤维波纹度特征的RVE模型进行了横向剪切渐进损伤分析,用以揭示该方法的研究价值及应用领域。结果表明,该方法能够快速有效地创建不同尺寸及纤维波纹度的RVE几何构型,这种含有波纹度特征的纤维构型会对UD-FRP的横向剪切性能产生一定影响,纤维波纹度越大,UD-FRP的横向剪切强度越大。
中图分类号:
谢晨阳, 黄鲛, 肖光明, 张贤杰, 王俊彪, 李玉军. 考虑纤维波纹度的单向复合材料代表性体积元生成算法[J]. 机械工程学报, 2024, 60(8): 186-195.
XIE Chenyang, HUANG Jiao, XIAO Guangming, ZHANG Xianjie, WANG Junbiao, LI Yujun. A Algorithm to Generate Representative Volume Elements for Unidirectional Composites Considering Fiber Misalignment[J]. Journal of Mechanical Engineering, 2024, 60(8): 186-195.
[1] ALVES M P,JUNIOR C A C,HA S K. Fiber waviness and its effect on the mechanical performance of fiber reinforced polymer composites:An enhanced review[J]. Composites Part A:Applied Science and Manufacturing,2021,149:106526. [2] 刘登俊,关庆丰,王志平,等. 电热处理对湿热环境作用下碳纤维环氧复合材料的损伤机制[J]. 机械工程学报,2017,53(18):64-70. LIU Dengjun,GUAN Qingfeng,WANG Zhiping,et al. Damage mechanism of electrothermal treatment on carbon fiber epoxy composites under humid and hot environment [J]. Journal of Mechanical Engineering,2017,53(18):64-70. [3] 谭华,晏石林. 热固性树脂基复合材料固化过程的三维数值模拟[J]. 复合材料学报,2004,21(6):167-172. TAN Hua,YAN Shilin. Three-dimensional simulation of curing process for thermoset composites[J]. Acta Materiae Compositae Sinica,2004,21(6):167-172. [4] CREIGHTON C J,SUTCLIFFE M P F,CLYNE T W. A multiple field image analysis procedure for characterisation of fibre alignment in composites[J]. Composites Part A Applied Science & Manufacturing,2001,32(2):221-229. [5] CHRISTIAN W J R,DIAZDELAO F A,ATHERTON K,et al. An experimental study on the manufacture and characterization of in-plane fibre-waviness defects in composites[J]. Royal Society Open Science,2018,5(5):180082. [6] MELRO A R,CAMANHO P P,PINHO S T. Generation of random distribution of fibres in long-fibre reinforced composites[J]. Composites Science and Technology,2008,68(9):2092-2102. [7] VAUGHAN T J,MCCARTHY C T. Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites[J]. Composites Science and Technology,2011,71(3):388-396. [8] FAESSEL M,DELISEE C,BOS F,et al. 3D Modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis[J]. Composites Science and Technology,2005,65(13):1931-1940. [9] RECCHIA S,ZHENG J,PELEGRI A A. Fiberwalk:A random walk approach to fiber representative volume element creation[J]. Acta Mechanica,2014,225(4-5):1301-1312. [10] FUKUI K,NONAMI R. Simultaneous optimization of carbon fiber allocation and orientation by IFM-GA[J]. Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers,2023,2(2):100078. [11] 朱晓鹏,陈磊,黄俊. 复合材料周期结构数学均匀化方法的一种新型单胞边界条件[J]. 计算力学学报,2021,38(3):401-410. ZHU Xiaopeng,CHEN Lei,HUANG Jun. A new unit cell boundary condition for mathematical homogenization method of composite periodic structure[J]. Journal of Computational Mechanics,2021,38(3):401-410. [12] CATALANOTTI G,SEBAEY T A. An algorithm for the generation of three-dimensional statistically representative volume elements of unidirectional fibre-reinforced plastics:Focusing on the fibres waviness[J]. Composite Structures,2019,227:111272. [13] SEBAEY T A,CATALANOTTI G,O'DOWD N P. A microscale integrated approach to measure and model fibre misalignment in fibre-reinforced composites[J]. Composites Science and Technology,2019,183:107793. [14] ALTENDORF H,JEULIN D. Random-walk-based stochastic modeling of three-dimensional fiber systems[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics,2011,83(4):041804. [15] Chapelle L,Lévesque M,Brøndsted P,et al. Generation of non-overlapping fiber architecture[C]//20th International Conference on Composite Materials. ICCM20,2015. [16] CATALANOTTI G. On the generation of RVE-based models of composites reinforced with long fibres or spherical particles[J]. Composite Structures,2016,138:84-95. [17] VARANDAS L F,CATALANOTTI G,MELRO A R,et al. Micromechanical modelling of the longitudinal compressive and tensile failure of unidirectional composites:The effect of fibre misalignment introduced via a stochastic process[J]. International Journal of Solids and Structures,2020,203:157-176. [18] MATTSON W,RICE B M. Near-neighbor calculations using a modified cell-linked list method[J]. Computer Physics Communications,1999,119(2-3):135-148. [19] KASHTALYAN M. Finite element analysis of composite materials using Abaqus™[J]. Aeronautical Journal,2014,118(1199):98-99. [20] 郭慧,黄玉东,刘丽,等. T300和国产碳纤维本体的力学性能对比及其分析[J]. 宇航学报,2009(5):2068-2072. GUO Hui,HUANG Yudong,LIU Li,et al. Comparison and analysis of mechanical properties between T300 and domestic carbon fiber body [J]. Journal of Astronautics,2009(5):2068-2072. [21] Hui X,XU Y,Zhang W. An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites[J]. Composite Structures,2021,263(5):113681. [22] TRIANTAFYLLIDIS N,BARDENHAGEN S. The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models[J]. Journal of the Mechanics & Physics of Solids,1996,44(11):1891-1928. [23] KANIT T,FOREST S,GALLIET I,et al. Determination of the size of the representative volume element for random composites:Statistical and numerical approach[J]. International Journal of Solids & Structures,2003,40(13-14):3647-3679. |
[1] | 方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23. |
[2] | 傅杨, 张跃, 毛颖, 唐小华, 陈祖高, 徐和武, 杨雨沛, 高斌, 田贵云. 基于Feature Boosting的管道电磁内检测多传感信号缺陷解析算法[J]. 机械工程学报, 2024, 60(20): 51-67. |
[3] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[4] | 张志勇, 王宇翔, 黄彩霞, 吴悠, 杜荣华. 融合灰色预测和卡尔曼滤波的车辆侧向碰撞预警[J]. 机械工程学报, 2024, 60(20): 240-250. |
[5] | 廖贵文, 张毅, 魏凯, 刘小君, 王伟. 受限润滑界面液固二相流场结构与颗粒运动行为耦合特性分析[J]. 机械工程学报, 2024, 60(20): 351-360. |
[6] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[7] | 王德祥, 张宇, 江京亮, 刘新福, 刘国梁. 离子液基和棕榈油基纳米流体在镍基高温合金微量润滑磨削界面的摩擦学机理研究[J]. 机械工程学报, 2024, 60(19): 159-171. |
[8] | 李浦, 逯代兴. 协同仿真算法研究综述[J]. 机械工程学报, 2024, 60(19): 172-186. |
[9] | 王晓宇, 魏兆成, 王学勤, 王栋. 整体叶轮双列开槽五轴插铣加工的残留材料建模[J]. 机械工程学报, 2024, 60(19): 310-317. |
[10] | 王高见, 刘丽, 康丹丹, 叶延洪, 邓德安. Ni含量对高速列车转向架耐候钢焊缝金属微观组织、力学性能及腐蚀行为的影响[J]. 机械工程学报, 2024, 60(18): 163-172. |
[11] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[12] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[13] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[14] | 张禹泽, 赵竞夫, 赵振伟, 康荣杰, 戴建生, 宋智斌. 面向多关节训练的并联柔索驱动下肢康复机器人设计与分析[J]. 机械工程学报, 2024, 60(17): 111-122. |
[15] | 梁旭, 张建勇, 李国涛, 苏婷婷, 何广平, 侯增广. 面向骨折复位手术的冗余并联机构:设计、建模与性能分析[J]. 机械工程学报, 2024, 60(17): 133-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||