• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (8): 384-395.doi: 10.3901/JME.2024.08.384

• 交叉与前沿 • 上一篇    下一篇

扫码分享

基于弹簧-磁流变阻尼器的拉索攀爬机器人减振机构及控制方法

徐丰羽1, 马凯威1, 宋巨龙1, 范保杰1, 武新军2   

  1. 1. 南京邮电大学自动化学院 南京 210023;
    2. 华中科技大学机械科学与工程学院 武汉 430074
  • 收稿日期:2023-04-01 修回日期:2023-11-07 出版日期:2024-04-20 发布日期:2024-06-17
  • 作者简介:徐丰羽(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为机器人及自动化,机电一体化技术,智能制造装备设计及控制。E-mail:xufengyu598@163.com
  • 基金资助:
    国家自然科学基金区域创新发展联合基金(U21A20139)、国家自然科学基金(52175100)和江苏省"333高层次人才培育工程"资助项目。

Vibration Reduction Mechanism and Control Method of Cable Climbing Robot Based on Spring-magnetorheological Damper

XU Fengyu1, MA Kaiwei1, SONG Julong1, FAN Baojie1, WU Xinjun2   

  1. 1. College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023;
    2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2023-04-01 Revised:2023-11-07 Online:2024-04-20 Published:2024-06-17

摘要: 拉索攀爬机器人在运行过程中受振动的影响,会出现打滑等爬升不稳定现象。为解决这一问题,首先,针对典型拉索攀爬机器人系统进行试验,分析振动环境下导致机器人速度波动的主要因素。然后,提出一种可调阻尼的弹簧-磁流变阻尼加载机构,并给出了输出力模型。进而,以拉索攀爬机器人系统的动力学模型为基础,建立以期望爬升速度为输入变量,电流值为输出变量的模糊PID控制器。最后,为验证以上理论的正确性,对所提出的弹簧-磁流变阻尼器和模糊PID减振控制方法进行了仿真和试验。结果表明,阻尼器的理论最大输出力为492 N,与实际测试值基本一致,平均相对误差约为3%;基于弹簧-磁流变阻尼器的模糊PID减振控制方法可将拉索攀爬机器人的速度波动控制在0.013 m/s范围内,显著提升了机器人爬升的稳定性。

关键词: 拉索攀爬机器人, 弹簧-磁流变阻尼器, 模糊PID, 减振控制, 爬升稳定性

Abstract: The cable climbing robot is affected by vibration during operation, which may lead to sliding and other unstable climbing phenomena. In order to solve this problem, firstly, experiments are carried out on a typical cable climbing robot system, and the main influencing factors of robot speed fluctuation in vibration environment are analysed. Then, an adjustable damping mechanism based on spring - magnetorheological (MR) damper is proposed, and the output force model is given. Furthermore, based on the dynamic model of the cable climbing robot system, a fuzzy PID controller with the expected climbing speed as the input variable and the current as the output variable is established. Finally, in order to verify the correctness of the above theory, the proposed spring MR damper and fuzzy PID damping control method are simulated and tested. The results show that the theoretical maximum output force of the damper is 492 N, which is basically consistent with the actual test value, and the average relative error is less than 3%; The speed fluctuation of cable climbing robot can be controlled within the range of 0.013 m/s by using the fuzzy PID damping control method based on spring - MR damper, which significantly improves the climbing stability of the robot.

Key words: cable climbing robot, spring-MR damper, fuzzy PID, vibration control, climbing stability

中图分类号: