机械工程学报 ›› 2021, Vol. 57 ›› Issue (8): 23-56.doi: 10.3901/JME.2021.08.023
• 特邀专栏:庆祝厦门大学机电工程系建系80周年:微纳制造与智能制造 • 上一篇 下一篇
王振忠1, 施晨淳1, 张鹏飞2, 杨哲2, 陈熠1, 郭江2
收稿日期:
2020-12-12
修回日期:
2021-03-22
出版日期:
2021-04-20
发布日期:
2021-06-15
通讯作者:
郭江(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为精密与超精密加工、中子光学、执行器、机电一体化。E-mail:guojiang@dlut.edu.cn
作者简介:
王振忠,男,1981年出生,博士,副教授。主要研究方向为超精密磨削、抛光装备开发及工艺技术。E-mail:wangzhenzhong@xmu.edu.cn
WANG Zhenzhong1, SHI Chenchun1, ZHANG Pengfei2, YANG Zhe2, CHEN Yi1, GUO Jiang2
Received:
2020-12-12
Revised:
2021-03-22
Online:
2021-04-20
Published:
2021-06-15
摘要: 在激光核聚变、大型天文望远镜等国家大光学工程及各种光机电产品的驱动下,高面形精度、高表面质量、多结构型式光学组件的需求量日益增加,因此,先进光学制造技术显得尤为重要。主要综述了近十年来光学超精密加工技术的发展情况,主要包括超精密车削、磨削和抛光技术。根据光学组件的材料特性、结构特征和加工要求等,阐述了超精密加工技术的具体研究进展,包括传统技术的迭代更新与新型技术的研制开发,并针对典型应用进行举例。最后,展望了超精密光学加工技术的发展趋势。希望能为光学制造领域后续深入研究提供参考。
中图分类号:
王振忠, 施晨淳, 张鹏飞, 杨哲, 陈熠, 郭江. 先进光学制造技术最新进展[J]. 机械工程学报, 2021, 57(8): 23-56.
WANG Zhenzhong, SHI Chenchun, ZHANG Pengfei, YANG Zhe, CHEN Yi, GUO Jiang. Recent Progress of Advanced Optical Manufacturing Technology[J]. Journal of Mechanical Engineering, 2021, 57(8): 23-56.
[1] GAO H,WANG X,GUO D,et al. Research progress on ultra-precision machining technologies for soft-brittle crystal materials[J]. Frontiers of Mechanical Engineering,2017,12(1):77-88. [2] XIA Z,FANG F,AHEARNE E,et al. Advances in polishing of optical freeform surfaces:A review[J]. Journal of Materials Processing Technology,2020:116828. [3] 伍凡,戴一帆. 先进光学制造专题导读[J]. 光电工程,2020,47(8):2-3. WU Fan,DAI Yifan. Introduction to advanced optical manufacturing[J]. Opto-Electronic Engineering,2020,47(8):2-3. [4] 淡晶晶,王传珂,贺少勃,等. 大科学工程与先进制造业的双向驱动效应研究——以高功率固体激光装置研制为例[J]. 工程研究-跨学科视野中的工程,2018,10(5):479-487. DAN Jingjing,WANG Chuanke,HE Shaobo,et al. Research on bidirectional-driven effects of large science project and advanced manufacture:Taking high power solid laser device as an example[J]. Journal of Engineering Studies,2018,10(5):479-487. [5] 王建刚. 光学零件加工的现状及发展[J]. 现代国企研究,2016(4):205-207. WANG Jiangang. Present situation and development of optical parts processing[J]. Modern SOE Research,2016(4):205-207. [6] 金滩,李平,肖航,等. 大中型光学组件高效精密磨削技术研究综述[J]. 机械工程学报,2016,52(9):165-175. JIN Tan,LI Ping,XIAO Hang,et al. Research summary on precision grinding technology oriented to achieve high process efficiency for large and middle-scale optic[J]. Journal of Mechanical Engineering,2016,52(9):165-175. [7] 于建海,于秋跃,房安利,等. 大口径碳化硅反射镜高效磨削实时补偿技术[J]. 光学技术,2020,46(4):502-506. YU Jianhai,YU Qiuyue,FANG Anli,et al. Real-time compensation of high efficiency grinding for the large aperture mirror[J]. Optical Technique,2020,46(4):502-506. [8] 朱日宏,孙越,沈华. 光学自由曲面面形检测方法进展与展望[J]. 光学学报,2021,41(1):0112001. ZHU Rihong,SUN Yue,SHEN Hua. Progress and prospect of optical freeform surface measurement[J]. Acta Optica Sinica,2021,41(1):0112001. [9] 郑爽. 高精度小口径非球面加工工艺研究[D]. 长春:长春理工大学,2013. ZHENG Shuang. The processing technology research of high precision minor-caliber aspheric surface[D]. Changchun:Changchun University of Science and Technology,2013. [10] 刘冬梅,郑爽,付秀华,等. 高精度小口径非球面加工工艺研究[J]. 长春理工大学学报,2013,36(Z1):24-27. LIU Dongmei,ZHENG Shuang,FU Xiuhua,et al. Research on the processing technology of high precision minor-caliber aspheric surface[J]. Journal of Changchun University of Science and Technology,2013,36(Z1):24-27. [11] 徐志强. 小口径非球面斜轴磁流变抛光关键技术研究[D]. 长沙:湖南大学,2015. XU Zhiqiang. Study on key technology of inclined magnetorheological polishing for micro aspherical surface[D]. Changsha:Hunan University,2015. [12] 杨辉,李静,张彬,等. 某光学自由曲面棱镜超精密加工技术研究[J]. 航空精密制造技术,2019,55(5):1-6. YANG Hui,LI Jing,ZHANG Bin,et al. Study on ultra-precision machining technology of optical free-form prism[J]. Aviation Precision Manufacturing Technology,2019,55(5):1-6. [13] 姚庠. 光学微结构表面精密加工的关键技术研究[D]. 上海:华东理工大学,2016. YAO Xiang. Research for key surface processing method of optical microstructure[D]. Shanghai:East China University of Science and Technology,2016. [14] CHRIS J E,JAMES B B. “Structured”,“Textured” or“Engineered”surfaces[J]. CIRP Annals-Manufacturing Technology,1999,48(2):541-556. [15] 吴春亚,郭闯强,裴旭东,等. 太赫兹段慢波结构的微细加工技术研究新进展[J]. 机械工程学报,2019,55(7):187-198. WU Chunya,GUO Chuangqiang,PEI Xudong,et al. New progress of microfabrication techniques for slow wave structures at THz frequencies[J]. Journal of Mechanical Engineering,2019,55(7):187-198. [16] 孟晓辉,王永刚,李文卿,等. 应用旋转法实现大口径非球面反射镜零重力面形加工[J]. 光学精密工程,2019,27(12):2517-2524. MENG Xiaohui,WANG Yonggang,LI Wenqing,et al. Fabrication of zero-gravity surface for large-aperture aspherical mirror by using rotationally method[J]. Optics and Precision Engineering,2019,27(12):2517-2524. [17] 徐放. 大口径轻量化铝反射镜加工工艺研究[D]. 南京:南京理工大学,2017. XU Fang. Research on lightweight large aperture reflector processing technology[D]. Nanjing:Nanjing University of Science and Technology,2017. [18] BRINKSMEIER E,RIEMER O,GESSENHARTER A,et al. Polishing of structured molds[J]. Cirp Annals,2004,53(1):247-250. [19] CHEUNG C F,KONG L B,HO L T,et al. Modeling and simulation of structure surface generation using computer controlled ultra-precision polishing[J]. Precision Engineering,2011,35(4):574-590. [20] 李敏. 剪切增稠抛光方法的基础研究[D]. 长沙:湖南大学,2015. LI Min. Fundamental research on shear-thickening polishing method[D]. Changsha:Hunan University,2015. [21] IKAWA N,DONALDSON R,KOMANDURI R,et al. Ultraprecision metal cutting:The past,the present and the future[J]. CIRP Annals,1991,40(2):587-594. [22] 戴一帆,周林,解旭辉,等. 应用离子束进行光学镜面确定性修形的实现[J]. 光学学报,2008(6):1131-1135. DAI Yifan,ZHOU Lin,XIE Xuhui,et al. Deterministic figuring in optical machining by ion beam[J]. Acta Optica Sinica,2008(6):1131-1135. [23] 唐瓦. 离子束抛光大口径非球面去除模型与工艺研究[D]. 长春:中国科学院长春光学精密机械与物理研究所,2016. TANG Wa. Research on removal model and technology for ion beam figuring large aspherical mirror[D]. Changchun:Changchun Institute of Optics,Fine Mechanics and Physics of CAS,2016. [24] XU H,ZHANG X,XU M,et al. Study on the control of surface roughness in single point diamond turning[C]//6th International Symposium on Advanced Optical Manufacturing and Testing Technologies:Advanced Optical Manufacturing Technologies,2012:84161D. [25] 郭海涛. KDP晶体单点金刚石切削表面质量分析与工艺参数优化研究[D]. 天津:天津大学,2018. GUO Haitao. Study on the surface quality analysis and process parameter optimization of KDP crystal single point diamond cutting[D]. Tianjin:Tianjin University,2018. [26] ZHANG L,ZHOU W,NAPLES N J,et al. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes[J]. Applied Optics,2018,57(13):3598-3605. [27] WEI Y,ZHAI P,CHEN X,et al. Study on design and diamond turning of optical freeform surface for progressive addition lenses[J]. Mathematical Problems in Engineering,2020,2020:1-9. [28] LEI X Y,ZHANG S,WANG S F,et al. Influence of the arrangement of vacuum chuck holes on the transmittance wavefront of large-aperture KDP in single-point diamond turning[J]. Applied Optics,2020,59(12):3619-3623. [29] HATEFI S,ABOU-EL-HOSSEIN K. Feasibility study on design and development of a hybrid controller for ultra-precision single-point diamond turning[J]. Majlesi Journal of Electrical Engineering,2019,13(2):121-128. [30] ZHANG L,ZHAO H,YANG Y,et al. Evaluation of repeated single-point diamond turning on the deformation behavior of monocrystalline silicon via molecular dynamic simulations[J]. Applied Physics A,2014,116(1):141-150. [31] HE C,ZONG W,SUN T. Origins for the size effect of surface roughness in diamond turning[J]. International Journal of Machine Tools and Manufacture,2016,106:22-42. [32] HE C,ZONG W. Influencing factors and theoretical models for the surface topography in diamond turning process:A review[J]. Micromachines,2019,10(5):288. [33] ZHANG S,ZHANG H,ZONG W. Modeling and simulation on the effect of tool rake angle in diamond turning of KDP crystal[J]. Journal of Materials Processing Technology,2019,273:116259. [34] HATEFI S,ABOU-EL-HOSSEIN K. Review of non-conventional technologies for assisting ultra-precision single-point diamond turning[J]. The International Journal of Advanced Manufacturing Technology,2020,111(9-10):1-19. [35] MOHAMMADI H,RAVINDRA D,KODE S K,et al. Experimental work on micro laser-assisted diamond turning of silicon (111)[J]. Journal of Manufacturing Processes,2015,19(8):125-128. [36] MOHAMMADI H,POYRAZ H B,RAVINDRA D,et al. Single point diamond turning of silicon by using micro-laser assisted machining technique[C]//Msec.,2014. [37] SHAHINIAN H,NAVARE J A,BODLAPATI C,et al. Micro laser assisted single point diamond turning of brittle and hard materials[C/CD]//Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV,2020. [38] NAVARE J,KANG D,ZAYTSEV D,et al. Experimental investigation on the effect of crystal orientation of diamond tooling on micro laser assisted diamond turning of zinc sulfide[J]. Procedia Manufacturing,2020,48:606-610. [39] ZHOU T,XU R,RUAN B,et al. Study on new method and mechanism of microcutting-etching of microlens array on 6H-SiC mold by combining single point diamond turning with ion beam etching[J]. Journal of Materials Processing Technology,2019,278:116510. [40] LEE Y J,CHAUDHARI A,ZHANG J,et al. Thermally assisted microcutting of calcium fluoride single crystals[M]//ZHANG Junjie,GUO Bing,ZHANG Jianguo. Simulation and experiments of material-oriented ultra-precision machining. Berlin:Springer,2019:77-102. [41] ZHANG S,ZHOU Y,ZHANG H,et al. Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J]. International Journal of Machine Tools and Manufacture,2019,142:16-41. [42] 李荣彬,孔令豹,张志辉,等. 微结构自由曲面的超精密单点金刚石切削技术概述[J]. 机械工程学报,2013,49(19):144-155. LEE Wingbun,KONG Lingbao,CHEUNG Chifai,et al. An overview of ultra-precision diamond machining of microstructured freeform surfaces[J]. Journal of Mechanical Engineering,2013,49(19):144-155. [43] ZHANG Guoqing,TO S,XIAO Gaobo. A novel spindle inclination error identification and compensation method in ultra-precision raster milling[J]. International Journal of Machine Tools & Manufacture,2014,78:8-17. [44] KONG L,CHEUNG C F. Prediction of surface generation in ultra-precision raster milling of optical freeform surfaces using an integrated kinematics error model[J]. Advances in Engineering Software,2012,45(1):124-136. [45] 曹义. 超精密铣削加工自由曲面光学组件误差补偿方法[J]. 组合机床与自动化加工技术,2018(11):96-98. CAO Yi. Error correction methodology for ultra-precision milling of freeform optics[J]. Modular Machine Tool & Automatic Manufacturing Technique,2018(11):96-98. [46] ZHANG G,TO S. Cutting mechanism and surface formation of ultra-precision raster fly cutting[M]// ZHANG Junjie,GUO Bing,ZHANG Jianguo. Simulation and experiments of material-oriented ultra-precision machining. Berlin:Springer,2019:103-127. [47] WANG S,TO S,CHEUNG C F. An investigation into material-induced surface roughness in ultra-precision milling[J]. The International Journal of Advanced Manufacturing Technology,2013,68(1-4):607-616. [48] WANG S,CHEN X,TO S,et al. Modelling and prediction of the effect of cutting strategy on surface generation in ultra-precision raster milling[J]. International Journal of Computer Integrated Manufacturing,2017,30(9):895-909. [49] SUN Z,TO S,WANG S,et al. Development of self-tuned diamond milling system for fabricating infrared micro-optics arrays with enhanced surface uniformity and machining efficiency[J]. Optics Express,2020,28(2):2221-2237. [50] ZHANG S,TO S,ZHU Z,et al. A review of fly cutting applied to surface generation in ultra-precision machining[J]. International Journal of machine tools and manufacture,2016,103:13-27. [51] ZHANG F,WANG S,AN C,et al. Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals[J]. Frontiers of Mechanical Engineering,2017,12(2):193-202. [52] FU P,XUE J,ZHOU L,et al. Influence of the heat deformation of ultra-precision fly cutting tools on KDP crystal surface microstructure[J]. The International Journal of Advanced Manufacturing Technology,2019,103(1):1009-1018. [53] CHEN D,ZHANG S,LIU J,et al. Morphological analysis of KDP-crystal workpiece surfaces machined by ultra-precision fly cutting[J]. Materials,2020,13(2):432. [54] WANG M,ZHANG Y,GUO S,et al. Longitudinal micro-waviness (LMW) formation mechanism on large optical surface during ultra-precision fly cutting[J]. The International Journal of Advanced Manufacturing Technology,2018,95(9-12):4659-4669. [55] LU H,DING Y,CHANG Y,et al. Dynamics modelling and simulating of ultra-precision fly-cutting machine tool[J]. International Journal of Precision Engineering and Manufacturing,2020,21(2):189-202. [56] CHEN D,LI S,FAN J. Effect of KDP-crystal material properties on surface morphology in ultra-precision fly cutting[J]. Micromachines,2020,11(9):802. [57] ZHU L,LI Z,FANG F,et al. Review on fast tool servo machining of optical freeform surfaces[J]. The International Journal of Advanced Manufacturing Technology,2018,95(5):2071-2092. [58] KANG M,YANG J,WANG X S,et al. Study on the variational-difference-based design and slow tool servo turning of progressive addition lenses[J]. Advances in Mechanical Engineering,2018,10(12):1-12. [59] KONG L B,CHEUNG C F. Design,fabrication and measurement of ultra-precision micro-structured freeform surfaces[J]. Computers & Industrial Engineering,2011,61(1):216-225. [60] YU D P,WONG Y S,HONG G S. Ultraprecision machining of micro-structured functional surfaces on brittle materials[J]. Journal of Micromechanics and Microengineering,2011,21(9):10-18. [61] LIU Q,ZHOU X Q,XU P Z,et al. A flexure-based long-stroke fast tool servo for diamond turning[J]. International Journal of Advanced Manufacturing Technology,2012,59(9-12):859-867. [62] LI Z X,FANG F Z,ZHANG X D,et al. Highly efficient machining of non-circular freeform optics using fast tool servo assisted ultra-precision turning[J]. Optics Express,2017,25(21):25243-25256. [63] ZHANG X D,LI Z X,ZHANG G X. High performance ultra-precision turning of large-aspect-ratio rectangular freeform optics[J]. Cirp Annals-Manufacturing Technology,2018,67(1):543-546. [64] CHEN C C,CHENG Y C,HSU W Y,et al. Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens[C]//Conference on Optical Manufacturing and Testing Ix,San Diego,CA(US),2011:812617. [65] HUANG P,WU X,TO S,et al. Deterioration of form accuracy induced by servo dynamics errors and real-time compensation for slow tool servo diamond turning of complex-shaped optics[J]. International Journal of Machine Tools and Manufacture,2020,154:103556. [66] 林泽钦,陈新度,颜志涛,等. 微透镜阵列的慢刀伺服加工表面粗糙度预测模型[J]. 哈尔滨理工大学学报,2020,25(3):83-87. LIN Zeqin,CHEN Xindu,YAN Zhitao,et al. The surface roughness prediction model of microlens array in slow tool servo cutting[J]. Journal of Harbin University of Science and Technology,2020,25(3):83-87. [67] 李荣彬,张志辉,杜雪,等. 自由曲面光学组件的设计、加工及面形测量的集成制造技术[J]. 机械工程学报,2010,46(11):137-148. LEE Wingbun,CHEUNG Chifai,TO Suet,et al. Integrated manufacturing technology for design,machining and measurement of freeform optics[J]. Journal of Mechanical Engineering,2010,46(11):137-148. [68] HUANG W H,YU D P,CHEN D S,et al. Investigation of variable spindle speed in slow tool servo-based turning of noncircular optical components[C/CD]//Eighth International Symposium on Advanced Optical Manufacturing Technologies,2016. [69] LIU Y T,QIAO Z,QU D,et al. Experimental investigation on form error for slow tool servo diamond turning of micro lens arrays on the roller mold[J]. Materials,2018,11(10):1816. [70] YAN G P,FANG F Z. Fabrication of optical freeform molds using slow tool servo with wheel normal grinding[J]. Cirp Annals-Manufacturing Technology,2019,68(1):341-344. [71] KONG L B,MA Y G,REN M J,et al. Generation and characterization of ultra-precision compound freeform surfaces[J]. Science Progress,2020,103(1):1-10. [72] 庄司克雄. 磨削加工技术[M]. 北京:机械工业出版社,2007. ZHUANGSI Kexiong. Grinding technology[M]. Beijing:China Machine Press,2007. [73] SAEKI M,KURIYAGAWA T,SYOJI K. Machining of aspherical molding dies utilizing parallel grinding method[J]. Journal of the Japan Society for Precision Engineering,2002,68(8):1067-1071. [74] HWANG Y,KURIYAGAWA T,LEE S K. Wheel curve generation error of aspheric microgrinding in parallel grinding method[J]. International Journal of Machine Tools and Manufacture,2006,46(15):1929-1933. [75] WANG Z,GUO J. Research on an optimized machining method for parallel grinding of f-θ optics[J]. The International Journal of Advanced Manufacturing Technology,2015,80(5):1411-1419. [76] 李洪亮. 微小球面和非球面组件的纳米级磨削加工技术研究[D]. 哈尔滨:哈尔滨工业大学,2011. LI Hongliang. Research on the nanogrinding technology of micro spherical and aspherical parts[D]. Harbin:Harbin Institute of Technology,2011. [77] SUZUKI H,KURIYAGAWA T,SYOJI K,et al. Study on ultra-precision grinding of micro aspherical surface[J]. Journal of the Japan Society for Precision Engineering,1998,64(9):1350-1354. [78] XI J,ZHAO H,LI B,et al. Profile error compensation in cross-grinding mode for large-diameter aspheric mirrors[J]. The International Journal of Advanced Manufacturing Technology,2016,83(9-12):1515-1523. [79] 王永强,尹韶辉,李林升,等. 小口径非球面光学模具斜轴磨削加工试验研究[J]. 南华大学学报,2016,30(4):49-55. WANG Yongqiang,YIN Shaohui,LI Linsheng,et al. Experimental study on inclined rotational grinding for small aspherical optical mould[J]. Journal of University of South China,2016,30(4):49-55. [80] 陈逢军,尹韶辉,胡天,等. 微小非球面光学模具单点斜轴误差补偿磨削[J]. 机械工程学报,2013,49(17):59-64. CHEN Fengjun,YIN Shaohui,HU Tian,et al. Single-point inclined-axis error compensation grinding for small aspheric optical molds[J]. Journal of Mechanical Engineering,2013,49(17):59-64. [81] SUZUKI H,KODERA S,MAEKAWA S,et al. Study on precision grinding of micro aspherical surface-Feasibility study of micro aspherical surface by inclined rotational grinding[J]. Journal of the Japan Society for Precision Engineering,1998,64(4):619-623. [82] 王泽彪. 微小非球面碳化钨模具的斜轴磨削及超声抛光工艺研究[D]. 长沙:湖南大学,2011. WANG Zebiao. Inclined axis grinding for WC micro aspheic mould and ultrasonic vibration assisted finishing properties study[D]. Changsha:Hunan University,2011. [83] 刘林枝. 小口径非球面斜轴磨削的砂轮磨损及补偿研究[J]. 中国机械工程,2012,23(15):1789-1792. LIU Linzhi. Wear compensation of grinding wheel for inclined-axis grinding small aspherical surface[J]. China Mechanical Engineering,2012,23(15):1789-1792. [84] 陈逢军,尹韶辉,胡天. Ф2 mm非球面光学模具斜轴磨削补偿研究[OL]. [2013-10-05]. http://www.paper.edu.cn. CHEN Fengjun,YIN Shaohui,HU Tian. Inclined-axis error compensation grinding for Ф2 mm aspheric optical mould[OL]. [2013-10-05]. http://www.paper.edu.cn. [85] 尹韶辉,龚胜,何博文,等. 小口径非球面斜轴磨削及磁流变抛光组合加工工艺及装备技术研究[J]. 机械工程学报,2018,54(21):205-211. YIN Shaohui,GONG Sheng,HE Bowen,et al. Development on synergistic process and machine tools integrated inclined axis grinding and magnetorheological polishing for small aspheric surface[J]. Journal of Mechanical Engineering,2018,54(21):205-211. [86] LIU K,LI X,RAHMAN M. Characteristics of ultrasonic vibration-assisted ductile mode cutting of tungsten carbide[J]. The International Journal of Advanced Manufacturing Technology,2008,35(7-8):833-841. [87] MAHADDALKAR P M,MILLER M H. Force and thermal effects in vibration-assisted grinding[J]. The International Journal of Advanced Manufacturing Technology,2014,71(5-8):1117-1122. [88] FANG F,NI H,GONG H. Rotary ultrasonic machining of hard and brittle materials[J]. Nanotechnol. Precis. Eng.,2014,12(3):227-234. [89] JIAN H Z,YAN Z,FU Q T,et al. Kinematics and experimental study on ultrasonic vibration-assisted micro end grinding of silica glass[J]. The International Journal of Advanced Manufacturing Technology,2015,78(9-12):1893-1904. [90] FENG P,LIANG G,ZHANG J. Ultrasonic vibration-assisted scratch characteristics of silicon carbide-reinforced aluminum matrix composites[J]. Ceramics International,2014,40(7):10817-10823. [91] 赵培轶. BK7光学玻璃超声振动磨削脆塑性转变及加工质量研究[D]. 哈尔滨:哈尔滨工业大学,2017. ZHAO Peiyi. Research on brittle ductile transition and machining quality in ultrasonic vibration assisted grinding of BK7 optical glass[D]. Harbin:Harbin Institute of Technology,2017. [92] ZHOU M,ZHAO P. Prediction of critical cutting depth for ductile-brittle transition in ultrasonic vibration assisted grinding of optical glasses[J]. The International Journal of Advanced Manufacturing Technology,2016,86(5):1775-1784. [93] 孙国燕. 低膨胀光学玻璃的超声振动磨削机理及工艺技术研究[D]. 西安:中国科学院西安光学精密机械研究所,2019. SUN Guoyan. Ultrasonic vibration assisted grinding mechanism and rocessing technology on low expansion optical glass[D]. Xi’an:Xi’an Institute of Optics and Percision Mechanics of CAS,2019. [94] 郭兵. 超硬微结构光学菜单面的超声振动磨削加工技术研究[D]. 哈尔滨:哈尔滨工业大学,2012. GUO Bing. Research on ultrasonic vibration assistant grinding of super-hard microstructured optical surfaces[D]. Harbin:Harbin Institute of Technology,2012. [95] JIANG C,WU T,YE H,et al. Estimation of energy and time savings in optical glass manufacturing when using ultrasonic vibration-assisted grinding[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2019,6(1):1-9. [96] 许陆昕. 碳化硅陶瓷超声振动磨削表面质量研究[D]. 苏州:苏州科技大学,2019. |
[1] | 李子清, 崔长彩, 卞素标, 李慧慧, 陆静, ORIOL Arteaga, 徐西鹏. 单晶金刚石衬底超精密加工损伤层无损测量与表征[J]. 机械工程学报, 2024, 60(4): 239-249. |
[2] | 孙健淞, 康仁科, 周平, 董志刚, 王毅丹. 蜂窝芯超声切削技术研究进展[J]. 机械工程学报, 2023, 59(9): 298-319. |
[3] | 何春雷, 张建国, 王姝淇, 任成祖. 基于多波长散射光特性的铝合金超精密车削表面粗糙度测量方法研究[J]. 机械工程学报, 2023, 59(3): 308-317. |
[4] | 陈磊, 刘阳钦, 唐川, 蒋翼隆, 石鹏飞, 钱林茂. 面向超精密加工的微观材料去除机理研究进展[J]. 机械工程学报, 2023, 59(23): 229-264. |
[5] | 戴一帆, 彭小强, 薛帅, 蒋庄德. 高性能光学制造[J]. 机械工程学报, 2023, 59(21): 1-14. |
[6] | 黄维维, 张鑫泉, 朱利民. 基于重复控制的快速刀具伺服系统前馈补偿方法[J]. 机械工程学报, 2023, 59(21): 43-51. |
[7] | 李涛, 黄惟琦, 龙归, 杨思铄, 张建国, 肖峻峰, 许剑锋. 单晶硅的激光抛光表面形貌演化[J]. 机械工程学报, 2023, 59(21): 52-64. |
[8] | 彭小强, 李煌, 王跃明, 关朝亮, 胡皓, 赖涛, 徐超. 化学镀NiP的凸面闪耀光栅超精密切削特性研究[J]. 机械工程学报, 2023, 59(21): 121-130. |
[9] | 贾琳华, 郑继辉, 张福民, 曲兴华. 基于光学频率梳的高精度测距技术研究进展[J]. 机械工程学报, 2023, 59(20): 244-260. |
[10] | 梅雪松, 李凯林, 赵万芹, 刘斌, 孙铮, 段文强, 王文君, 崔健磊, 凡正杰. 激光自身空间维度加工系统综述[J]. 机械工程学报, 2023, 59(19): 375-388. |
[11] | 杨洋, 林日雄, 杜建军. 超声椭圆振动切削闪耀光栅的三维形貌建模及控制方法[J]. 机械工程学报, 2023, 59(17): 291-299. |
[12] | 梅雪松, 孙涛, 赵万芹, 凡正杰, 张涛, 唐程, 崔健磊, 王文君. 光学相干成像技术在激光加工过程实时监测与控制中的应用研究进展[J]. 机械工程学报, 2023, 59(15): 216-231. |
[13] | 郭源帆, 尹韶辉, 黄帅. Halbach阵列与不同励磁方式的磁流变抛光特性及机理研究[J]. 机械工程学报, 2023, 59(15): 341-353. |
[14] | 苏飞, 欧阳晨恺, 李纯杰, 郑雷, 蔡志华. 平纹编织碳纤维/Kevlar纤维增强混杂复合材料微-宏观切削去除机理研究[J]. 机械工程学报, 2022, 58(21): 331-348. |
[15] | 张飞虎, 王乙任, 廖德锋, 任乐乐, 李琛. 光学元件全口径抛光中温度分布对元件面形的影响规律及其控制方法研究[J]. 机械工程学报, 2022, 58(15): 46-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||