• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (21): 43-51.doi: 10.3901/JME.2023.21.043

• 特邀专栏:高性能超精密制造 • 上一篇    下一篇

扫码分享

基于重复控制的快速刀具伺服系统前馈补偿方法

黄维维1,2, 张鑫泉1,2, 朱利民1,2   

  1. 1. 上海交通大学智能制造与信息工程研究所 上海 200240;
    2. 上海交通大学机械系统与振动国家重点实验室 上海 200240
  • 收稿日期:2023-01-05 修回日期:2023-06-22 出版日期:2023-11-05 发布日期:2024-01-15
  • 通讯作者: 朱利民(通信作者),男,1973年出生,博士,教授,博士研究生导师。主要研究方向为面向微纳制造的控制、传感与装备,生产计量与质量控制,以及多轴数控制造技术与加工装备。E-mail:zhulm@sjtu.edu.cn
  • 作者简介:黄维维,男,1994年出生,博士后。主要研究方向为FTS的设计、建模与跟踪控制,以及基于FTS的微纳制造。E-mail:huangww@sjtu.edu.cn;张鑫泉,男,1986年出生,博士,副教授,博士研究生导师。主要研究方向为超精密智能制造,以及智能光学系统。E-mail:zhangxinquan@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3400102)和上海市“科技创新行动计划”高新技术领域(22511102105)资助项目。

Repetitive-control-based Feedforward Compensation Method for Fast Tool Servo System

HUANG Weiwei1,2, ZHANG Xinquan1,2, ZHU Limin1,2   

  1. 1. Institute of Intelligent Manufacturing and Information Engineering, Shanghai Jiao Tong University, Shanghai 200240;
    2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240
  • Received:2023-01-05 Revised:2023-06-22 Online:2023-11-05 Published:2024-01-15

摘要: 快速刀具伺服(Fast tool servo,FTS)系统的跟踪性能直接影响其对光学微结构表面的加工精度和加工效率。为此提出基于重复控制的离线前馈补偿方法,该方法通过对跟踪误差进行分段在线学习和离线补偿,实现FTS系统对非周期参考轨迹的高速精密跟踪。在自制单轴FTS系统上进行对比跟踪测试,测试结果表明:相比于二自由度控制方法,提出的离线前馈补偿方法对随机均匀B样条曲线和复合频率正弦曲线的均方根跟踪误差分别减小94.47%和93.83%。此外,将该FTS系统与超精密车床联动在高转速下加工得到网格面和复眼透镜阵列,这两种表面的最大轮廓误差分别为93.59 nm和134.73 nm,表面粗糙度均小于5 nm。研究结果为基于FTS的光学微结构表面高效、高精加工提供了新方法和新思路。

关键词: 快速刀具伺服, 精密运动控制, 光学微结构表面, 超精密车削加工, 重复控制

Abstract: The machining accuracy and efficiency of optical micro-structured surfaces depend on the tracking performance of fast tool servo (FTS) systems. Therefore, a feedforward compensation method based on repetitive controller (RC) is proposed to address this issue. For this method, the precise tracking of aperiodic reference trajectories is achieved for FTS systems by the online learning and offline compensation of the segmented tracking errors. The comparative tracking experiments are conducted on a self-developed monoaxial FTS system, and the experimental results show that the RMS tracking errors of the two degree-of-freedom control method are reduced by 94.47% and 93.83% via using the proposed method when tracking the random uniform B-spline curve and the muti-frequency sinusoidal curve, respectively. Furthermore, the grid surface and the compound eye lens array are machined under a high spindle speed with the proposed feedforward compensation method by integrating the FTS system into an ultraprecision lathe. The maximum contour error of the obtained two types of surfaces are 93.59 nm and 134.73 nm, respectively, and the surface roughness of both two surfaces is less than 5 nm. The results provide a novel method and a new idea for FTS systems to achieve the high efficiency and high precision machining of optical micro-structured surfaces.

Key words: fast tool servo, precision motion control, optical micro-structured surface, ultra-precision turning, repetitive control

中图分类号: