[1] LIAO Z F, HUANG D S. Nozzle device for the self-excited oscillation of a jet[C]//Proceedings of the 8th International Symposium on Jet Cutting Technology,Durham. 1986:195-201. [2] 杨晓毅,邓晓刚.自激振荡雾化喷嘴结构优化与仿真[J].科技与创新,2018(10):28-30.YANG Xiaoyi, DENG Xiaogang. Optimization and simulation of atomizing nozzle structure with self-excited oscillation[J]. Technology and Innovation,2018(10):28-30. [3] MOLLOY N A,TAYLOR P L. Oscillatory flow of a jet into a blind cavity[J]. Nature, 1969, 224(5225):1192-1194. [4] ROCKWELL D, NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics,1979,11(1):67-94. [5] CELIK E,ROCKWELL D. Shears layer oscillation along a perforated surface:A self-excited large-scale instability[J]. Physics of Fluids,2002,14(12):4444-4447. [6] TUNA B A,ROCKWELL D. Self-sustained oscillations of shallow flow past sequential cavities[J]. Journal of Fluid Mechanics,2014,758:655-685. [7] KUBOTA A, KATO H, YAMAGUCHI H. A new modelling of cavitating flows:A numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics,1992,240:59-96. [8] 唐川林,吴霞,胡东.串联型脉冲喷嘴的试验研究[J].湖南工业大学学报,2007,21(4):60-64.TANG Chuanlin,WU Xia,HU Dong. Experimental study of series pulse nozzle[J]. Journal of Hunan University of Technology,2007,21(4):60-64. [9] 李晓红,杨林,王建生,等.自激振荡脉冲射流装置的固有频率特性[J].煤炭学报,2000,25(6):641-644.LI Xiaohong,YANG Lin,WANG Jiansheng,et al. Natural frequency characteristics of a self-oscillating pulsed jet device[J]. Journal of Coal Science,2000,25(6):641-644. [10] LUMLEY J L. The structure of inhomogeneous turbulent flows[J]. Atmospheric Turbulence and Radio Wave Propagation,1967:166-178. [11] LUMLEY J L,YAGLOM A M. A century of turbulence[J].Flow Turbulence and Combustion,2001,66:241-286. [12] 郭子漪,赵建福,李凯,等.基于POD-Galerkin降维方法的热毛细对流分岔分析[J].力学学报,2022,54(5):1186-1198.GUO Ziyi,ZHAO Jianfu,LI Kai,et al. Thermal capillary convective bifurcation analysis based on POD-Galerkin dimension reduction method[J]. Chinese Journal of Mechanics,2022,54(5):1186-1198. [13] 李天一,万敏平,陈十一,等. Gappy POD方法重构湍流数据的研究[J].力学学报,2021,53(10):2703-2711.LI Tianyi, WAN Minping, CHEN Shiyi, et al.Reconstruction of turbulence data by Gappy POD method[J]. Chinese Journal of Mechanics,2021,53(10):2703-2711. [14] 王芳,贾胜坤,张会书,等.基于实验数据的湍流扩散POD模态分析[J].化工学报,2021,72(9):4531-4543.WANG Fang,JIA Shengkun,ZHANG Huishu,et al. POD Modal analysis of turbulent diffusion based on experimental data[J]. Journal of Chemical Engineering,2021,72(9):4531-4543. [15] 刘阁,邓阳琴,金兴,等.对称槽道涡波流场流动特征的POD分析[J].强激光与粒子束,2018,30(6):173-182.LIU Ge,DENG Yangqin,JIN Xing,et al. POD Analysis of flow characteristics of vortex wave flow field in symmetrical channel[J]. Intense Laser and Particle Beams,2018,30(6):173-182. [16] 李静,张伟伟,李新涛.失稳初期的低雷诺数圆柱绕流POD-Galerkin建模方法研究[J].西北工业大学学报,2015,33(4):596-602.LI Jing,ZHANG Weiwei,LI Xintao. POD-Galerkin Modeling method for low reynolds number cylindrical flow at the initial stage of instability[J]. Journal of Northwestern Polytechnical University,2015,33(4):596-602. [17] 刘强,罗振兵,邓雄,等.基于POD方法的合成双射流流场模态分析[J].空气动力学学报,2020,38(6):1027-1033.LIU Qiang,LUO Zhenbing,DENG Xiong,et al. Modal analysis of synthetic double jet flow field based on POD method[J]. Acta Aerodynamica Sinica,2020,38(6):1027-1033. [18] HUANG Z,LI T,HUANG K,et al. Predictions of flow and temperature fields in a T-junction based on dynamic mode decomposition and deep learning[J]. Energy,2022,261:125228. [19] MIAO M C,SHI J W,LIANG S,et al. Flow field prediction of s-shaped shock vectoring nozzle with rear deck based on deep learning[C]//Journal of Physics:Conference Series. London:IOP Publishing,2024:012104. [20] KHAN A,RAJENDRAN P,SIDHU J S S,et al.Convolutional neural network modeling and response surface analysis of compressible flow at sonic and supersonic mach numbers[J]. Alexandria Engineering Journal,2023,65:997-1029. [21] HASEGAWA K, FUKAMI K, MURATA T, et al.Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes[J].Theoretical and Computational Fluid Dynamics,2020,34:367-383. [22] 刘思远,艾超,郁春嵩,等.基于深度信念网络多参数智能融合的滑靴副性能退化状态评估方法[J].机械工程学报,2024,60(4):178-188.LIU Siyuan,AI Chao,YU Chunsong,et al. Performance degradation state assessment method of sliding shoe pair based on multi-parameter intelligent fusion of deep belief network[J]. Journal of Mechanical Engineering,2024,60(4):178-188. |