• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (22): 342-354.doi: 10.3901/JME.2025.22.342

• 交叉与前沿 • 上一篇    

扫码分享

基于降阶预测模型的自激振荡消防喷嘴流场预测

袁晓明, 刘存飞, 肖浩阳, 沈炳韩, 徐新宇, 张立杰   

  1. 燕山大学起重机械关键技术全国重点实验室 秦皇岛 066004
  • 收稿日期:2024-11-09 修回日期:2025-05-09 发布日期:2026-01-10
  • 作者简介:袁晓明(通信作者),男,1984年出生,博士,副教授,博士研究生导师。主要研究方向为消防水炮机液耦合动力学,新型液压元件开发,消防车长管路系统内部流场分析与优化。E-mail:yuanxiaoming@ysu.edu.cn
  • 基金资助:
    国家自然科学基金面上资助项目(52175066)。

Self-oscillating Fire Nozzle Flow Field Prediction Based on Reduced Order Prediction Model

YUAN Xiaoming, LIU Cunfei, XIAO Haoyang, SHEN Binghan, XU Xinyu, ZHANG Lijie   

  1. National Key Laboratory of Hoisting Machinery Key Technology, Yanshan University, Qinhuangdao 066004
  • Received:2024-11-09 Revised:2025-05-09 Published:2026-01-10

摘要: 作为消防水射流系统的核心部件,自激振荡消防喷嘴适用于消灭大多数固体物质火灾,且具有结构简单、工作效率高、成本低廉等优点。利用数值模拟方法可计算其流场,并得到高精度结果,但计算时间长且计算量大。降阶预测模型是实现降低流场维度、实现流场重构和预测流场分布的有效手段。因此,以自激振荡消防喷嘴为研究对象,提出基于编码器和本征正交分解的降阶模型,以长短时记忆神经网络和深度神经网络为推理器,开展喷嘴流场脉冲机理分析、特征提取重构、时序预测与脉冲打击力分析研究。预测结果表明,喷嘴外流场预测平均相对误差为7.02%,内流场预测平均相对误差为7.20%,脉冲射流压力预测平均相对误差为3.25%。经试验验证,预测模型与试验的最小脉冲打击力误差为7.74%,最大脉冲打击力误差为5.65%;数值仿真与试验的最小压力误差3.14%,最大压力误差为6.72%。本项目研究可为预测喷嘴流场提供一种方法。

关键词: 降阶模型, 长短时记忆神经网络, 自激振荡, 消防喷嘴, 流场预测

Abstract: As the core component of the fire water jet system, the self-excited oscillating fire nozzle is suitable for eliminating most solid fires, and has the advantages of simple structure, high efficiency and low cost. The numerical simulation method can be used to calculate the flow field and obtain high precision results, but the calculation time is long and the calculation amount is large. The reduced order prediction model is an effective means to reduce the dimension of the flow field, realize flow field reconstruction and predict the flow field distribution. Therefore, taking the self-oscillating fire nozzles as the research object, a reduced order model based on encoder and proper orthogonal decomposition is proposed, and a long short-term memory networks and a deep neural network are used as reasoners to carry out the pulse mechanism analysis, feature extraction and reconstruction, timing prediction and pulse impact force analysis of the nozzle flow field. The prediction results show that the average relative error of the prediction of nozzle outflow field is 7.02%, that of internal flow field is 7.20%, and that of pulse jet pressure is 3.25%. The experimental results show that the minimum impulse force error between the prediction model and the test is 7.74% and the maximum impulse force error is 5.65%. The minimum pressure error of numerical simulation and test is 3.14%, and the maximum pressure error is 6.72%. The research of this project can provide a way to predict the nozzle flow field.

Key words: reduced order model, long short-term memory networks, self-excited oscillation, fire nozzle, flow field prediction

中图分类号: