• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (14): 207-214.doi: 10.3901/JME.2018.14.207

• 交叉与前沿 • 上一篇    下一篇

扫码分享

基于瞬时涡量助推效应的自激振荡腔室脉动研究

汪朝晖1,2, 饶长健1,2, 高全杰1,2, 孙笑1,2, 王永龙1,2   

  1. 1. 武汉科技大学冶金装备及其控制教育部重点试验室 武汉 430081;
    2. 武汉科技大学机械传动与制造工程湖北省重点试验室 武汉 430081
  • 收稿日期:2017-08-10 修回日期:2017-12-30 出版日期:2018-07-20 发布日期:2018-07-20
  • 作者简介:汪朝晖,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为自激振荡脉冲射流理论及新技术。E-mail:zhwang@wust.edu.cn;饶长健,男,1993年出生,硕士研究生。主要研究方向为多相流及湍流流动机理。E-mail:1161898629@qq.com;高全杰,男,1963年出生,教授,博士研究生导师。主要研究方向为先进机械装备创新设计及应用。E-mail:gaoqj6328@126.com;孙笑,女,1994年出生,硕士研究生。主要研究方向为流体机械设计理论及方法。E-mail:872264283@qq.com;王永龙,男,1994年出生,硕士研究生。主要研究方向为大涡数值模拟计算与分析。E-mail:352345270@qq.com
  • 基金资助:
    国家自然科学基金(51405352)、湖北省教育厅科学技术研究计划重点(D20161102)和武汉市高新技术产业科技创新团队计划(2015070504020225)资助项目。

Study on the Pulsation of Self-excited Oscillation Chamber Based on Instantaneous Vortex Boosting Effect

WANG Zhaohui1,2, RAO Changjian1,2, GAO Quanjie1,2, SUN Xiao1,2, WANG Yonglong1,2   

  1. 1. Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081;
    2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081
  • Received:2017-08-10 Revised:2017-12-30 Online:2018-07-20 Published:2018-07-20

摘要: 射流剪切层瞬时涡量变化对大结构涡环的脉动过程有重要影响。依据涡环在自激振荡腔室内的蓄能及释能状态,分析了自激振荡脉冲涡量助推效应。利用大涡模拟数值计算方法,分析入口压力为1 MPa时自激振荡瞬时涡量初生时刻扰动变化、一个脉动周期内瞬时流向涡量变化和自激振荡腔室下游出口流道流速变化。结果表明:自激振荡腔室内气流形成剪切层和初生大涡,当初始大涡被腔室碰撞壁夹角分离,剪切层产生反向扰动波,离散涡在分离区发生反馈,形成初生流向涡;当上一脉动周期大涡能量完全释放,下游出口轴向流速达到脉动最大。当剪切层中离散涡汇聚成新的大涡时,下游出口轴向流速达到脉动最低。当大涡开始不完全脱落时,下游出口轴向流速达到脉动平均;随着上游入口压力增大,流体脉冲率先增大后减小,当压力为1.2 MPa,脉冲率达到最大22.53%。

关键词: 大结构涡环, 脉冲率, 瞬时涡量, 轴向流速, 自激振荡腔室

Abstract: The change of instantaneous vortex of the jet shear layer has an important effect on pulsation process of the vortex ring. Based on the energy storage and release status of the vortex, the boosting effect of the self-excited oscillation pulsed vortex is analyzed. The large eddy simulation method is used, the disturbance of self-oscillation instantaneous vorticity changes in the primary time, the instantaneous flow vorticity changes in a pulsating cycle and the change of downstream flow of self-excited oscillation chamber rate are analyzed when the inlet pressure is at 1 MPa. The results show that the shear layer and the initial large vortex are formed for airflow in the self-excited oscillation chamber. When the initial large vortex is separated by the angle of the chamber collision, the shear layer produces a reverse disturbance wave, and the discrete vortex is fed back in the separation zone and forms the primary flow vortex. When the energy of the large vortex in last oscillation period is completely released, the axial flow rate reaches the maximum pulsation. When the discrete vortices in the shear layer converge into new large vortices, the axial velocity reaches the lowest pulsation. When the large vortex begins to not completely fall off, the axial flow rate reached the average pulse; As the inlet pressure increases, the velocity of the fluid increases first and then decreases, and when the inlet pressure is 1.2 MPa, the maximum pulse rate is up to 22.53%.

Key words: axial velocity, instantaneous vortex, large structure vortex ring, pulse rate, self-excited oscillation chamber

中图分类号: