• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (16): 377-389.doi: 10.3901/JME.2024.16.377

• 交叉与前沿 • 上一篇    下一篇

扫码分享

自激振荡脉冲空化射流喷嘴谐振机理及协同优化研究

袁晓明1, 王宁1, 王卫东1, 张立杰1, 朱勇2   

  1. 1. 燕山大学河北省重型机械流体动力传输与控制重点实验室 秦皇岛 066004;
    2. 消防应急救援装备应急管理部重点实验室 上海 200032
  • 收稿日期:2023-11-15 修回日期:2024-06-17 出版日期:2024-08-20 发布日期:2024-10-21
  • 作者简介:袁晓明(通信作者),男,1984年出生,博士,副教授,博士研究生导师。主要研究方向为流体传动与控制和机械结构优化设计。E-mail:yuanxiaoming@ysu.edu.cn
  • 基金资助:
    国家自然科学基金(51805468,52175066)、河北省自然科学基金(E2020203090)、河北省高等学校科学技术研究(ZD2022052)和消防应急救援装备应急管理部重点实验室开放基金(2020XFZB07)资助项目。

Research on Resonance Mechanism and Collaborative Optimization for the Self-excited Oscillating Pulse Cavitation Jet Nozzle

YUAN Xiaoming1, WANG Ning1, WANG Weidong1, ZHANG Lijie1, ZHU Yong2   

  1. 1. Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004;
    2. Key Laboratory of Fire Emergency Rescue Equipment, Ministry of Emergency Management, Shanghai 200032
  • Received:2023-11-15 Revised:2024-06-17 Online:2024-08-20 Published:2024-10-21

摘要: 自激振荡脉冲空化射流喷嘴的打击力峰值和打击力脉动幅值是衡量其射流性能的重要指标,对其进行准确预测具有重要的理论和工程实践意义。为探究自激振荡脉冲空化射流喷嘴内外流场的演化机理,建立该喷嘴射流过程仿真模型。以入口圆角、腔径、腔长、下喷嘴直径为设计变量,以打击力峰值和打击力脉动幅值为目标变量,将正交试验法、反向传播神经网络与非支配排序遗传算法相结合,确定自激振荡脉冲空化射流喷嘴协同优化设计方法。计算结果表明,在入口压力为1 MPa时,各因素对喷嘴综合射流性能影响的主次顺序依次为入口圆角、下喷嘴直径、腔径、腔长;协同优化结果比正交试验最优结果的打击力脉动幅值提升62.68%,打击力峰值提升1.13%;喷嘴最优结构能产生明显的脉冲空化射流,喷嘴内腔空化区域随时间做周期性缩张;入口压力越大,谐振腔内空化强度越高,射流中空泡含量越高。基于协同优化结果,采用3D打印技术加工自激振荡脉冲空化射流喷嘴流场可视化试验模型,通过试验验证仿真模型的正确性。所得结论为自激振荡脉冲空化射流喷嘴设计理论的发展提供支持。

关键词: 自激振荡, 脉冲空化射流, 喷嘴, 谐振机理, 协同优化

Abstract: The peak value and pulsation amplitude of the self-excited oscillating pulse cavitation jet nozzle are important indexes to evaluate the jet performance. It is of great significance in theory and engineering practice to predict the peak value of the self-excited oscillating pulse cavitation jet nozzle accurately. In order to investigate the evolution mechanism of the inner and outer flow field of the self-excited oscillating pulse cavitation jet, a simulation model of the jet impact of the nozzle is established. Taking the inlet fillet, cavity diameter, cavity length and the diameter of the lower nozzle as the design variables, and taking the peak value of the striking force and the amplitude of the pulsation of the striking force as the target variables, the collaborative optimization design method of the nozzle of the self-excited oscillating pulse cavitation jet is determined by combining the orthogonal test method, the back propagation neural network and the non-dominated sorting genetic algorithm. The results show that when the inlet pressure is 1 MPa, the main and secondary order of the influences of various factors on the jet performance of the nozzle are the inlet fillet, the diameter of the lower nozzle, the cavity diameter and the cavity length. Compared with the optimal result of orthogonal test, the amplitude of impact pulsation increased by 62.68% and the peak value of impact increased by 1.13%. The optimal structure of the nozzle can produce obvious pulse cavitation jet, and the cavitation region of the nozzle cavity contracts periodically with time. The higher the inlet pressure, the higher the cavitation intensity and the higher the content of hollow bubbles. Based on the collaborative optimization results, a visualization test model of self-excited oscillating pulse cavitation jet nozzle flow field is fabricated by 3D printing technology, and the correctness of the simulation model is verified by experiments. The obtained conclusions provide support for the development of the design theory of self-oscillating pulsed cavitation jet nozzles.

Key words: self-excited oscillation, pulsed cavitation jet, nozzle, resonance mechanism, collaborative optimization

中图分类号: