• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (16): 129-136.doi: 10.3901/JME.2025.16.129

• 材料科学与工程 • 上一篇    

扫码分享

低稀土镁合金在峰时效下的弥散析出及强化机制

张一凡1, 聂慧慧1,2, 陈洪胜1, 郑留伟2,3   

  1. 1. 太原理工大学机械工程学院 太原 030024;
    2. 先进镁基材料山西省重点实验室 太原 030024;
    3. 太原理工大学分析测试中心 太原 030024
  • 接受日期:2024-08-12 出版日期:2025-03-20 发布日期:2025-03-20
  • 作者简介:张一凡,男,2001年出生。主要研究方向为稀土镁合金的轧制及热处理。E-mail:15235247755@163.com;聂慧慧(通信作者),女,1986年出生,博士,副教授。主要研究方向为镁合金及其复合材料的制备加工及塑性成形。E-mail:niehuihui@tyut.edu.cn
  • 基金资助:
    国家自然科学基金(52005362)和山西省基础研究计划面上(202303021221005,20210302103163)资助项目

Dispersion Precipitation and Strengthening Mechanism of Low Rare Earth Magnesium Alloys at Peak Aging

ZHANG Yifan1, NIE Huihui1,2, CHEN Hongsheng1, ZHENG Liuwei2,3   

  1. 1. College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024;
    2. Shanxi Key Laboratory of Advanced Magnesium-based Materials, Taiyuan 030024;
    3. Instrumental Analysis Center of Taiyuan University of Technology, Taiyuan 030024
  • Accepted:2024-08-12 Online:2025-03-20 Published:2025-03-20

摘要: 高强稀土镁合金在航空航天和交通运输等领域具有广阔的应用前景,然而通过提高稀土含量获得高强镁合金的常规技术手段大幅增加了材料制备成本,因此亟待开发一种稀土含量较低的高强度低成本镁合金。探索Mg-5.3Gd-4.1Y-0.13Zr固溶态镁合金在轧制变形及后续时效过程中的组织性能演变规律,定量计算各强化手段的贡献值,重点阐明峰时效下特殊的析出强化机制。结果表明:全时期都存在的立方型化合物Mg5(GdY)主要分布在晶界处,尺寸从40 nm到300 nm不等,质地较软,强化效果差。峰时效下观察到2~6 nm椭球状析出相弥散分布在基体中,由于稀土元素含量较低,该析出相只形核、不长大,对合金具有显著的强化作用。峰时效下,合金的屈服强度达到341.14 MPa,其中析出强化的贡献值为159 MPa,占比高达47%;抗拉强度达到504.40 MPa,优于多数Mg-Gd系和Mg-Gd-Y系合金。这是在低稀土含量条件下,通过调控析出相的形核生长行为从而调控其形貌及分布,最终获得高强镁合金的新方法,为借助析出相调控来设计开发高强稀土镁合金提供了新原理和新思路。

关键词: 低稀土, 镁合金, 时效, 弥散析出, 强化

Abstract: High-strength rare-earth magnesium alloys have broad application prospects in aerospace, transportation and other fields. However, conventional methods obtaining high-strength magnesium alloys by increasing rare-earth contents raise material production costs. Therefore, there is an urgent need to develop a high-strength, low-cost magnesium alloy with low rare-earth content. The evolution of microstructure and properties of the Mg-5.3Gd-4.1Y-0.13Zr solid-solution magnesium alloy during rolling deformation and aging processes is investigated. The contribution of each strengthening mechanism is calculated, with a focus on the unique precipitation strengthening mechanism at peak aging. The results indicate that the cubic compound Mg5(GdY), which exists throughout the entire aging period, is primarily distributed along the grain boundaries. Its size ranges from 40 nm to 300 nm, and it is relatively soft with poor strengthening effect. During peak aging, 2~6 nm ellipsoidal precipitates are observed to be finely dispersed within the matrix. Due to the relatively low rare-earth content, these precipitates only nucleate and do not grow, contributing significantly to the strengthening of the alloy. At peak aging, the alloy’s yield strength reached 341.14 MPa, with a contribution from precipitation strengthening of 159 MPa, accounting for 47% of the total. The ultimate tensile strength reached 504.40 MPa, which is superior to most Mg-Gd and Mg-Gd-Y alloy systems. This is a novel method for obtaining high-strength magnesium alloys under low rare-earth content by controlling the nucleation and growth behavior of the precipitates, thereby regulating their morphology and distribution. This approach provides new principles and ideas for designing and developing high-strength rare-earth magnesium alloys through precipitation control.

Key words: low rare earth, magnesium alloy, aging, dispersion precipitation, strengthening

中图分类号: