• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (14): 63-72.doi: 10.3901/JME.2025.14.063

• 特邀专栏:铝合金薄壁构件超低温成形制造新原理 • 上一篇    

扫码分享

超低温变形与时效交互作用下的2219铝合金组织性能演变规律

亢鑫1,2, 杨光1,2, 焦娇3, 赵子皓3, 凡晓波1,2   

  1. 1. 大连理工大学机械工程学院 大连 116024;
    2. 大连理工大学高性能精密制造全国重点实验室 大连 116024;
    3. 天津航天长征火箭制造有限公司 天津 300462
  • 收稿日期:2025-01-25 修回日期:2025-05-16 发布日期:2025-08-25
  • 作者简介:亢鑫,男,1996年出生,博士研究生。主要研究方向为铝合金超低温形变热处理组织性能与强化机制。E-mail:kangxin2019@mail.dlut.edu.cn;凡晓波(通信作者),男,1987年出生,博士,研究员,博士研究生导师。主要研究方向为金属薄壁结构超低温成形技术与装备。E-mail:xbfan@dlut.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFA0708804)和国家自然科学基金(52375311)资助项目。

Cooperative Effect of Cryogenic Deformation and Artificial Aging on Microstructure and Mechanical Properties of 2219 Aluminum Alloy

KANG Xin1,2, YANG Guang1,2, JIAO Jiao3, ZHAO Zihao3, FAN Xiaobo1,2   

  1. 1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024;
    2. State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024;
    3. Tianjin Long March Launch Vehicle Manufacturing Co., Ltd., Tianjin 300462
  • Received:2025-01-25 Revised:2025-05-16 Published:2025-08-25

摘要: 超低温成形是近年发展起来的一类变革性的铝合金薄壁结构高性能成形技术。采用超低温成形制造的可热处理强化铝合金构件组织性能受超低温变形与热处理耦合影响。因此,通过固溶态超低温变形+人工时效试验,系统阐明超低温变形与时效交互作用下的2219铝合金力学性能演变规律;通过晶粒结构与析出相表征,揭示超低温变形与时效温度交互作用下的强化相析出机制。结果表明,超低温变形可显著提高组织性能,匹配人工时效可以进一步优化性能。固溶态2219铝合金超低温变形后,得益于大量增殖并保留的位错亚结构,材料强度随变形程度增加而大幅提高。30%超低温变形试样常温屈服强度达到397.5 MPa,相对未变形试样提高26.5%,超过材料T87热处理强化水平。进行人工时效后,峰时效强度随时效温度增加而减小,达到峰时效强度的时效时间缩短。150 ℃×18 h人工时效后达到最高峰时效强度,屈服与抗拉强度分别是408.9和488.4 MPa。此时强化相主要是大量弥散析出的θ"相。随着时效温度升高,强化相逐渐转变为θ'相。当时效温度为200 ℃时,时效1 h就可达到峰时效强度,可以大幅缩短制造周期。此外,随着时效温度升高,超低温变形保留的高能亚结构组织会发生回复,屈服强度降低、韧性增加。因此,通过超低温大变形与短时高温时效,可同时获得优异的强度与韧性。综上,通过超低温变形与人工时效合理匹配可获得优异的组织性能,为薄壁结构超低温成形组织性能调控提供理论指导。

关键词: 铝合金, 超低温成形, 时效处理, 力学性能, 析出相

Abstract: Cryogenic forming has been developed into a kind of revolutionary forming technology for high-performance aluminum alloy thin-walled components. The mechanical properties and microstructure of heat-treatable strengthened aluminum alloy components that fabricated by cryogenic forming process are affected by cryogenic deformation and heat treatment. Therefore, the mechanical property evolution of 2219 aluminum alloy under the combined effects of cryogenic deformation and aging is systematically investigated through uniaxial tensile testing following cryogenic deformation and artificial aging. Additionally, the mechanism of precipitation is revealed through the characterization of grain structure and precipitated phases. The results show that cryogenic deformation significantly enhanced the mechanical properties and microstructure, which can be further optimized through appropriate artificial aging treatments. After cryogenic deformation, the strength of the 2219 aluminum alloy in W-temper increased significantly due to the multiplication and retention of dislocations and substructures. The yield strength of the specimens with 30% cryogenic deformation and natural aging reached 397.5 MPa, representing a 26.5% enhancement compared to the undeformed specimens, which exceeded the strength level of T87 temper. After artificial aging, the strengths under peak aging condition decreased with the increasing aging temperature; and the aging time of peak aging strength is shortened. The highest peak aging strength is obtained after aging at 150 ℃ for 18 h, with the yield strength reaching 408.9 MPa and the ultimate tensile strength reaching 488.4 MPa, respectively. Under this condition, the main strengthening phases are numerous diffusely distributed θ" phases. With the increase of aging temperature, the strengthening phases gradually transformed into θ′ phases. When the aging temperature is 200°C, the peak aging strength can be achieved by aging for 1 h, which can significantly shorten the manufacturing cycle. In addition, with the increase of artificial aging temperature, the high-energy microstructure retained by cryogenic deformation would recover, causing the decrease of yield strength and the increase of toughness. Therefore, excellent strength and toughness can be obtained simultaneity by cryogenic deformation and short-time high-temperature aging. In conclusion, excellent mechanical properties and microstructure can be obtained through reasonable matching of cryogenic deformation and artificial aging, providing theoretical guidance for regulation of mechanical properties and microstructure in cryogenic forming process of thin-walled structures.

Key words: aluminum alloy, cryogenic forming, artificial aging, mechanical properties, precipitation

中图分类号: