[1] 王向明. 飞机新概念结构设计与工程应用[J]. 航空科学技术,2020,31(4):1-7. WANG Xiangming. Design and engineering application of new conceptual structures for aircraft[J]. Aeronautical Science and Technology,2020,31(4):1-7. [2] 晏武英. 制空作战飞机发动机发展历程及未来趋势[J]. 航空动力,2020(1):59-64. YAN Wuying. Development process and future trend of air-combat aircraft engine[J]. Aviation Power,2020(1):59-64. [3] 王华明,姚晓丹. 王华明院士:国产大飞机新型战机用上国际领先的激光成形技术[J].表面工程与再制造,2018,18(3):48-50. WANG Huaming,YAO Xiaodan. Academician WANG Huaming:Domestic large aircraft new fighter aircraft using the international leading laser forming technology[J]. Surface Engineering and Remanufacture,2018,18(3):48-50. [4] ZHOU Y,QIN G,LI L,et al. Formability,microstructure and mechanical properties of Ti-6Al-4V deposited by wire and arc additive manufacturing with different deposition paths[J]. Materials Science & Engineering:A,2020,772:138654. [5] YANG Q,XIA C,DENG Y,et al. Microstructure and mechanical properties of AlSi7Mg0.6 aluminum alloy fabricated by wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT)[J]. Materials,2019,12(16):2525. [6] REN J,LI Y,FENG T. Microstructure characteristics in the interface zone of Ti/Al diffusion bonding[J]. Materials Letters,2002,56(5):647-652. [7] ZHU Z,LEE K Y,WANG X. Ultrasonic welding of dissimilar metals,AA6061 and Ti6Al4V[J]. The International Journal of Advanced Manufacturing Technology,2012,59(5-8):569-574. [8] CHEN S,LI L,CHEN Y,et al. Improving interfacial reaction nonhomogeneity during laser welding-brazing aluminum to titanium[J]. Materials and Design,2011,32(8):4408-4416. [9] DRESSLER U,BIALLAS G,MERCADO A U. Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3[J]. Materials Science & Engineering:A,2009,526(1-2):113-117. [10] 王亚荣,滕文华,余洋,等. 铝/钛异种金属的电子束熔钎焊[J]. 机械工程学报,2012,48(20):91-95. WANG Yarong,TENG Wenhua,YU Yang,et al. Electron beam welding-brazing of Al/Ti dissimilar alloys[J]. Journal of Mechanical Engineering,2012,48(20):91-95. [11] SUN Q,LI J,LIU Y,et al. Arc characteristics and droplet transfer process in CMT welding with a magnetic field[J]. Journal of Manufacturing Processes,2018,32(APR.):48-56. [12] 王迪,邓国威,杨永强,等. 金属异质材料增材制造研究进展[J]. 机械工程学报,2021,57(1):186-198. WANG Di,DENG Guowei,YANG Yongqiang,et al. Research progress on additive manufacturing of metallic heterogeneous materials[J]. Journal of Mechanical Engineering,2021,57(1):186-198. [13] 李军兆. 磁场辅助钛/铝异种金属MIG熔-钎焊工艺及机理研究[D]. 哈尔滨:哈尔滨工业大学,2017. LI Junzhao. Study on process and mechanism of magnetic-assisted MIG welding of titanium/aluminum dissimilar metals[D]. Harbin:Harbin Institute of Technology,2017. [14] CHEN Y,CHEN S,LI L. Effects of heat input on microstructure and mechanical property of Al/Ti joints by rectangular spot laser welding-brazing method[J]. The International Journal of Advanced Manufacturing Technology,2009,44(3-4):265-272. [15] 李永梅,陈利华,王延龙,等. 热输入对钛铝异种合金激光自熔钎焊接头组织与力学性能的影响[J].热加工工艺,2023,52(9):47-50. LI Yongmei,CHEN Lihua,WANG Yanlong,et al. Effect of heat input on microstructure and mechanical properties of laser self-melting brazing joint of Ti-Al dissimilar alloy[J]. Hot Working Technology,2023,52(9):47-50. [16] 张玉凤. 钛-铝异种金属MIG/TIG双面双弧对接熔钎焊组织与性能调控[D]. 北京:北京科技大学,2017. ZHANG Yufeng. Microstructure and properties control of MIG/TIG double arc welding of Titanium-aluminum dissimilar metals[D]. Beijing:University of Science and Technology Beijing,2017. [17] ONUIKE B,BANDYOPADHYAY A. Additive manufacturing of Inconel 718-Ti6Al4V bimetallic structures[J]. Additive Manufacturing,2018,22:844-851. [18] AHSAN M R U,TANVIR A N M,ROSS T,et al. Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire + arc additive manufacturing[J]. Rapid Prototyping Journal,2020,26(3):519-530. [19] JADHAV S,BAJESTANI S M,ISLAM S,et al. Materials characterization of Ti6Al4V to NbZr1 bimetallic structure fabricated by wire arc additive manufacturing[J]. Materials Today Communications,2023,36:106934. [20] LI K,CHEN W,GONG N,et al. A critical review on wire-arc directed energy deposition of high-performance steels[J]. Journal of Materials Research and Technology,2023,24:9369-9412. [21] 郝轩,黄永德,陈伟,等. 基于CMT技术的铝合金电弧增材制造研究现状[J]. 精密成形工程,2018,10(5):88-94. HAO Xuan,HUANG Yongde,CHEN Wei,et al. Research status of the aluminum alloy arc additive manufacturing technology based on the CMT[J]. Journal of Netshape Forming Engineering,2018,10(5):88-94. [22] 贾剑平,毕凯强,刘丹,等. 冷金属过渡技术的研究现状与展望[J]. 热加工工艺,2015,44(1):6-8,5. JIA Jianping,BI Kaiqiang,LIU Dan,et al. Research status and prospect of cold metal transition technology[J]. Hot Working Technology,2015,44(1):6-8,5. [23] RAJEEV G P,KAMARAJ M,BAKSHI S R. Al-Si-Mn alloy coating on aluminum substrate using cold metal transfer (CMT) welding technique[J]. JOM,2014,66(6):1061-1067. [24] SHANG J,WANG K,ZHOU Q,et al. Microstructure characteristics and properties of Mg/Al dissimilar metals made by cold metal transfer welding with ER4043 filler metal[J]. Rare Metal Materials and Engineering,2013,42(7):1337-1341. [25] 张露馨. 不等厚异质DP980/DP780双相钢冷金属过渡焊接工艺及接头组织性能研究[D]. 沈阳:沈阳大学,2019. ZHANG Luxin. Study on cold metal transition welding process and joint microstructure properties of heterogeneous DP980/DP780 duplex steel with different thickness[D]. Shenyang:Shenyang University,2019. [26] 刘志森,薛丁琪,韩绍华,等. 基于CMT焊接的双金属电弧增材成形件的组织和力学性能[J]. 热加工工艺,2017,46(17):184-186,190. LIU Zhisen,XUE Dingqi,HAN Shaohua,et al. Microstructure and mechanical properties of double metal arc additive forming part based on CMT welding[J]. Hot Working Technology,2017,46(17):184-186,190. [27] 田银宝,申俊琦,胡绳荪,等. 丝材+电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报,2019,55(11):1407-1416. TIAN Yinbao,SHEN Junqi,HU Shengsun,et al. Fabrication of Titanium/Aluminum dissimilar metal reactive layer by wire + arc additive[J]. Acta Merallurgica Sinica,2019,55(11):1407-1416. [28] LU Q,CHEN L,NI C. Improving welded valve quality by vibratory weld conditioning[J]. Materials Science & Engineering:A,2006,457(1):246-253. [29] ZHAN J,WU J,MA R,et al. Effect of microstructure on the superelasticity of high-relative-density Ni-rich NiTi alloys fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology,2023,317:117988. |