机械工程学报 ›› 2024, Vol. 60 ›› Issue (24): 127-141.doi: 10.3901/JME.2024.24.127
艾诚1, 张龙1, 郭敏2, 黄太文2, 刘林2
收稿日期:
2024-03-12
修回日期:
2024-11-05
出版日期:
2024-12-20
发布日期:
2025-02-01
作者简介:
艾诚(通信作者),男,1989年出生,博士,副教授。主要研究方向为单晶高温合金的组织优化、缺陷控制与力学性能。Email:aicheng@chd.edu.cn
基金资助:
AI Cheng1, ZHANG Long1, GUO Min2, HUANG Taiwen2, LIU Lin2
Received:
2024-03-12
Revised:
2024-11-05
Online:
2024-12-20
Published:
2025-02-01
摘要: 与目前已在工业上得到广泛应用的快速凝固法(High rate solidification,HRS)相比,液态金属冷却法(Liquid metal cooling,LMC)具有更高的温度梯度,因此在制备大尺寸单晶涡轮叶片时具有显著的优势。归纳总结HRS与LMC技术的工作原理与温度梯度,由HRS与LMC技术制备的单晶高温合金铸件的枝晶组织、显微偏析、固溶处理、显微孔洞、铸造缺陷形成倾向与力学性能等特点。与HRS技术相比,LMC技术可显著地细化枝晶间距,并降低铸态组织中元素的显微偏析倾向;LMC技术可有效地降低固溶处理难度,并降低铸态和热处理态合金中显微孔洞的数量和尺寸;LMC技术可有效地降低定向凝固时雀斑和缘板杂晶等铸态缺陷的形成倾向;在较低的服役温度下,LMC技术可有效地提高合金的低周疲劳性能和高周疲劳性能。然而,LMC技术存在选晶器中引晶段晶体取向控制效果较差和Sn污染等问题,需要采用优化定向凝固工艺参数和使用高强度定向凝固型壳等方法解决上述问题。
中图分类号:
艾诚, 张龙, 郭敏, 黄太文, 刘林. 液态金属冷却法制备镍基单晶高温合金铸件的研究进展[J]. 机械工程学报, 2024, 60(24): 127-141.
AI Cheng, ZHANG Long, GUO Min, HUANG Taiwen, LIU Lin. Research Progress of Ni-based Single Crystal Superalloy Castings Prepared by Liquid Metal Cooling Technique[J]. Journal of Mechanical Engineering, 2024, 60(24): 127-141.
[1] 师昌绪,仲增墉. 中国高温合金五十年[M]. 北京:冶金工业出版社,2006. SHI Changxu,ZHONG Zengyong. Fifty years of superalloys in China[M]. Beijing:Metallurgical Industry Press,2006. [2] 周瑞发,韩雅芳,李树索. 高温结构材料[M]. 北京:国防工业出版社,2006. ZHOU Ruifa,HAN Yafang,LI Shusuo. High temperature structural materials[M]. Beijing:National Defense Industry Press,2006. [3] 傅恒志,郭景杰,刘林,等. 先进材料定向凝固[M]. 北京:科学出版社,2008. FU Hengzhi,GUO Jingjie,LIU Lin,et al. Directional solidification of advanced materials[M]. Beijing:Science Press,2008. [4] REED R C. The superalloys:Fundamentals and applications[M]. Cambridge:Cambridge University Press,2008. [5] LIU L,HUANG T,QU M,et al. High thermal gradient directional solidification and its application in the processing of nickel-based superalloys[J]. Journal of Materials Processing Technology,2010,210(1):159-165. [6] WILSON B,CUTLER E,FUCHS G. Effect of solidification parameters on the microstructures and properties of CMSX-10[J]. Materials Science and Engineering:A,2008,479(1-2):356-364. [7] POLLOCK T,MURPHY W. The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metallurgical and Materials Transactions A,1996,27(4):1081-1094. [8] 刘晓功,饶洋,刘培元,等. 温度梯度对籽晶法制备镍基单晶高温合金DD6凝固组织的影响[J]. 铸造,2022(4):415-419. LIU Xiaogong,RAO Yang,LIU Peiyuan,et al. Effect of temperature gradient on solidification microstructure of seeding preparation process for Ni-based single crystal superalloy DD6[J]. Foundry,2022(4):415-419. [9] 郭喜平,傅恒志,孙家华. 高温度梯度改进单晶高温合金的性能[J]. 材料研究学报,1995,9(3):213-218. GUO Xiping,FU Hengzhi,SUN Jiahua. Influence of high thermal gradient casting on the microstructure and stress rupture life of single crystal NASAIR100[J]. Chinese Journal of Material Research,1995,9(3):213-218. [10] ZHANG H,PEI Y,LI S,et al. Effect of process parameters on microstructures and properties of DZ125 superalloy solidified by LMC[J]. Materials Research Innovations,2014,18(Suppl. 4):S4-385-S4-9. [11] 黄乾尧,李汉康. 高温合金[M]. 北京:冶金工业出版社,2000. HUANG Qianyao,LI Hankang. Superalloys[M]. Beijing:Metallurgical Industry Press,2000. [12] 闫学伟. 重燃叶片定向凝固过程多尺度数值模拟及凝固缺陷预测[D]. 北京:清华大学,2017. YAN Xuewei. Multi-scale numerical simulation and solidified defects prediction of industrial gas turbine blade casting during directional solidification[D]. Beijing:Tsinghua University,2017. [13] 申健. 一种镍基单晶高温合金的组织与性能[D]. 沈阳:沈阳工业大学,2013. SHEN Jian. Microstructures and properties of a nickel base single crystal superalloy[D]. Shenyang:Shenyang University of Technology,2013. [14] KONTER M,THUMANN M. Materials and manufacturing of advanced industrial gas turbine components[J]. Journal of Materials Processing Technology,2001,117(3):386-390. [15] ELLIOTT A J. Directional solidification of large cross-section nickel-base superalloy castings via liquid-metal cooling[D]. Michigan:University of Michigan,2005. [16] ZHANG J,LOU L. Directional solidification assisted by liquid metal cooling[J]. Journal of Materials Science & Technology,2007,23(3):289-300. [17] GIAMEI A,TSCHINKEL J. Liquid metal cooling:A new solidification technique[J]. Metallurgical Transactions A,1976,7(9):1427-1434. [18] 刘金洪,刘林,黄太文,等. 液态金属冷却定向凝固设备的研制[J]. 铸造,2010(8):822-825. LIU Jinhong,LIU Lin,HUANG Taiwen,et al. Development of directional solidification equipment with liquid metal cooling[J]. Foundry,2010(8):822-825. [19] 杜玉俊,沈军,熊义龙,等. 电磁约束成形的技术特点及其发展前景[J]. 材料导报,2012,26(7):118-122. DU Yujun,SHEN Jun,XIONG Yilong,et al. Technical features and prospects of the electromagnetic confinement and shaping[J]. Materials Reports,2012,26(7):118-122. [20] 杨森,黄卫东,刘文今,等. 激光超高温度梯度快速定向凝固研究[J]. 中国激光,2002(5):475-479. YANG Sen,HUANG Weidong ,LIU Wenjin,et al. Research on laser rapid directional solidification with ultra-high temperature gradient[J]. Chinese Journal of Lasers,2002(5):475-479. [21] 卢玉章,熊英,彭建强,等. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程,2018,46(1):8-15. LU Yuzhang,XIONG Ying,PENG Jianqiang,et al. Simulation and experiment of solidification process for directionally solidified industrial gas turbine hollow blades[J]. Journal of Materials Engineering,2018,46(1):8-15. [22] WHITESELL H,OVERFELT R. Influence of solidification variables on the microstructure,macrosegregation,and porosity of directionally solidified Mar-M247[J]. Materials Science and Engineering:A,2001,318(1-2):264-276. [23] BRUNDIDGE C L,VAN DRASEK D,WANG B,et al. Structure refinement by a liquid metal cooling solidification process for single-crystal Nickel-base superalloys[J]. Metallurgical and Materials Transactions A,2012,43(3):965-976. [24] KURZ W,BEZENçON C,GäUMANN M. Columnar to equiaxed transition in solidification processing[J]. Science and Technology of Advanced Materials,2001,2(1):185-185. [25] 刘刚,刘林,赵新宝,等. 一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析[J]. 金属学报,2010,46(1):77-83. LIU Gang,LIU Lin,ZHAO XinBao,et al. Microstructure and microsegregation in a Ni-based single crystal superalloy directionally solidified under high thermal gradient[J]. Acta Metallurgica Sinica,2010,46(1):77-83. [26] 刘晓功,饶洋,刘培元,等. 温度梯度对籽晶法制备镍基单晶高温合金DD6凝固组织的影响[J]. 铸造,2022,71(4):415-419. LIU Xiaogong,RAO Yang,LIU Peiyuan,et al. Effect of temperature gradient on solidification microstructure of seeding preparation process for Ni-based single crystal superalloy DD6[J]. Foundry,2022,71(4):415-419. [27] 肖旋,高慈,秦学智,等. 抽拉速率对定向凝固DZ483合金的微观组织及力学性能的影响[J]. 中国有色金属学报,2013,23(10):2808-2816. XIAO Xuan,GAO Ci,QIN Xuezhi,et al. Effects of withdrawal rate on microstructures and mechanical properties of directionally solidified DZ483 superalloy[J]. The Chinese Journal of Nonferrous Metals,2013,23(10):2808-2816. [28] 李双明,杜炜,张军,等. CMSX-2单晶高温合金高梯度定向凝固下过渡区的组织演化特征[J]. 金属学报,2002(11):1195-1198. LI Shuangming,DU Wei,ZHANG Jun,et al. Solidified microstructure evolution of transitional zone in cmsx-2 single crystal superalloy under high-temperature gradient directional solidification[J]. Acta Metallurgica Sinica,2002(11):1195-1198. [29] 陈晶阳,吴文津,李青,等. 采用低温度梯度HRS工艺制备的镍基单晶高温合金雀斑组织[J]. 中国有色金属学报,2018,28(12):2494-2498. CHEN Jingyang,WU Wenjin,LI Qing,et al. Freckle of Ni-based single crystal superalloy prepared by low thermal gradient HRS process[J]. The Chinese Journal of Nonferrous Metals,2018,28(12):2494-2498. [30] 赵新宝,岳亮,夏万顺,等. 固溶处理对一种第四代镍基单晶高温合金微观组织和偏析的影响[J]. 电子显微学报,2020,39(5):462-469. ZHAO Xinbao,YUE Liang,XIA Wanshun,et al. The influence of solution treatment temperature on the microstructure and microsegregation of a fourth generation nickel-based single crystal superalloy[J]. Journal of Chinese Electron Microscopy Society,2020,39(5):462-469. [31] Hunt J D. Cellular and primary dendrite spacings[C/CD]//Solidification and Casting of Metals/Proc. Conf.,Sheffield,England,July 1977. [32] 艾诚,王国鑫,陈曦,等. 抽拉速率对一种Co-Al-W基单晶高温合金凝固行为的影响[J]. 中国有色金属学报,2023,33(6):1831-1841.AI Cheng,WANG Guoxin,CHEN Xi,et al. Effect of withdrawal rate on solidification behaviors of a Co-Al-W based single crystal superalloy[J]. The Chinese Journal of Nonferrous Metals,2023,33(6):1831-1841. [33] 闵志先,沈军,熊义龙,等. 高温度梯度定向凝固镍基高温合金DZ125的组织演化[J]. 金属学报,2011,47(4):397-402. MIN Zhixian,SHEN Jun,XIONG Yilong,et al. Microstructural evolution of directionally solidified Ni-based superalloy DZ125 under high temperature gradient[J]. Acta Metallurgica Sinica,2011,47(4):397-402. [34] 张卫国,刘林,黄太文,等. 定向凝固ZMLMC法温度梯度的测定及其对凝固组织的影响[J]. 铸造技术,2006(11):1165-1168. ZHANG Weiguo,LIU Lin,HUANG Taiwen,et al. Determining the temperature measurement of temperature gradient on ZMLMC directional solidification apparatus and the effect of temperature gradient on solidification microstructure[J]. Foundry Technology,2006(11):1165-1168. [35] LI L,OVERFELT R A. Influence of directional solidification variables on the cellular and primary dendrite arm spacings of PWA1484[J]. Journal of Materials Science,2002,37(16):3521-3532. [36] POLLOCK T M,MURPHY W H. The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metallurgical and Materials Transactions A,1996,27(4):1081-1094. [37] ELLIOTT A J,POLLOCK T M,TIN S,et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling:A comparative assessment[J]. Metallurgical and Materials Transactions A,2004,35(10):3221-3231. [38] LOHMüLLER A. Optimization of liquid metal cooling process and solidification process influenced by parameters[D]. Erlangen:Friedrich-alexander University of Erlangen-Nuremberg (FAU),2002. [39] LIU G,LIU L,ZHANG G J,et al. Microstructure and element segregation of Ni-Base superalloy casting with radiation and liquid-metal cooling [J]. Materials science forum,2015,816:608-612. [40] CLEMENS M L,PRICE A,BELLOWS R S. Advanced solidification processing of an industrial gas turbine engine component[J]. JOM,2003,55(3):27-31. [41] BALSONE S,FENG G,PETERSON L,et al. Microstructure and mechanical behavior of liquid metal cooled directionally solidified GTD-444[C]//Solidification Processes and Microstructures:A Symposium in Honor of Wilfried Kurz as held at the 2004 TMS Annual Meeting. 2004:77-83. [42] STEFANESCU D M. Science and engineering of casting solidification[M]. Berlin:Springer,2015. [43] 顾林喻,刘忠元,史正兴. 高梯度快速定向凝固下DZ22高温合金的显微偏析[J]. 中国有色金属学报,1996(2):112-115. GU Linyu,LIU Zhongyuan,SHI Zhengxin. Microsegregation of DZ22 superalloy under unidirectional solidification with high temperature gradient and rapid growth rate[J].The Chinese Journal of Nonferrous Metals,1996(2):112-115. [44] 李相伟,王莉,刘心刚,等. HRS和LMC工艺对第三代镍基单晶高温合金DD33中显微孔洞的影响[J]. 材料研究学报,2014,28(9):656-662. LI Xiangwei,WANG Li,LIU Xingang,et al. Microporosity reduction by liquid cooling process of a single crystal nickel based superalloy[J]. Chinese Journal of Materials Research,2014,28(9):656-662. [45] WILSON B,HICKMAN J,FUCHS G. The effect of solution heat treatment on a single-crystal Ni-based superalloy[J]. JOM,2003,55(3):35-40. [46] FUCHS G. Solution heat treatment response of a third generation single crystal Ni-base superalloy[J]. Materials Science and Engineering:A,2001,300(1-2):52-60. [47] 张琰斌. 第三代镍基单晶高温合金固溶处理研究及工艺优化[D]. 西安:西北工业大学,2018. ZHANG Yanbin. Study on the solution heat treatment and processing optimization of third generation ni-base single crystal superalloys[D]. Xi’an:Northwestern Polytechnical University,2018. [48] 于军伟,康茂东,刘雅辉,等. 镍基单晶高温合金微观孔洞缺陷研究进展[J]. 铸造技术,2018,39(11):2615-2619. YU Junwei,KANG Maodong,LIU Yahui,et al. Advances on micro-pore defect of single-crystal nickel-base superalloy[J]. Foundry Technology,2018,39(11):2615-2619. [49] LAMM M,SINGER R. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483[J]. Metallurgical and Materials Transactions A,2007,38(6):1177-1183. [50] LECOMTE-BECKERS J. Study of microporosity formation in nickel-base superalloys[J]. Metallurgical Transactions A,1988,19(9):2341-2348. [51] 石倩颖,李相辉,郑运荣,等. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成[J]. 金属学报,2012,48(10):1237-1247.SHI Qianying,LI Xianghui,ZHENG Yunrong,et al. Formation of solidification and homogenisation micropores in two single crystal superalloys produced by hrs and LMC processes[J]. Acta Metallurgica Sinica,2012,48(10):1237-1247. [52] BRUNDIDGE C,VAN DRASEK D,WANG B,et al. Structure refinement by a liquid metal cooling solidification process for single-crystal nickel-base superalloys[J]. Metallurgical and Materials Transactions A,2012,43(3):965-976. [53] SIGWORTH G K,WANG C. Mechanisms of porosity formation during solidification:A theoretical analysis[J]. Metallurgical Transactions B,1993,24(2):349-364. [54] BOKSTEIN B,EPISHIN A,LINK T,et al. Model for the porosity growth in single-crystal nickel-base superalloys during homogenization[J]. Scripta Materialia,2007,57(9):801-804. [55] LI X,WANG L,DONG J,et al. Evolution of micro-pores in a single-crystal nickel-based superalloy during solution heat treatment[J]. Metallurgical and Materials Transactions A,2017,48(6):2682-2686. [56] COPLEY S,GIAMEI A F,JOHNSON S,et al. The origin of freckles in unidirectionally solidified castings[J]. Metallurgical Transactions,1970,1(8):2193-2204. [57] AUBURTIN P,WANG T,COCKCROFT S,et al. Freckle formation and freckle criterion in superalloy castings[J]. Metallurgical and Materials Transactions B,2000,31(4):801-811. [58] TIN S,POLLOCK T,KING W. Carbon additions and grain defect formation in high refractory nickel-base single crystal superalloys[J]. Superalloys,2000,2000:201-210. [59] MA D X,ZHOU B,BÜHRIG-POLACZEK A. Investigation of freckle formation under various solidification conditions[J]. Advanced Materials Research,2011,278:428-433. [60] SCHADT R,WAGNER I,PREUHS J,et al. New aspects of freckle formation during single crystal solidification of CMSX-4[J]. Superalloys,2000,2000:211-218. [61] BECKERMANN C,GU J,BOETTINGER W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings[J]. Metallurgical and Materials Transactions A,2000,31(10):2545-2557. [62] 许庆彦,杨聪,闫学伟,等. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报,2019,55(9):1175-1184. XU Qingyan,YANG Cong,YAN Xuewei,et al. Development of numerical simulation in nickel-based superalloy turbine blade directional solidification[J]. Acta Metallurgica Sinica,2019,55(9):1175-1184. [63] 李亚峰,刘林,黄太文,等. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展[J]. 材料导报,2018,31(9):118-122. LI Yafeng,LIU Lin,HUANG Taiwen,et al. Research progress of stray grain formation in the platform of ni-base single crystal turbine blades[J]. Materials Reports,2018,31(9):118-122. [64] TER VEHN M M,DEDECKE D,PAUL U,et al. Undercooling related casting defects in single crystal turbine blades[J]. Superalloys,1996,1996:471-479. [65] 唐宁,孙长波,张航,等. 高温合金单晶叶片定向凝固过程的宏微观数值模拟[J]. 稀有金属材料与工程,2013,42(11):2298-2303. Tang Ning,Sun Changbo,Zhang Hang,et al. Macro and micro numerical simulation of directional solidification of super alloy SX turbine blade[J]. Rare Metal Materials and Engineering,2013,42(11):2298-2303. [66] 郭如峰,刘林,李亚峰,等. 液态金属冷却法制备DD403合金过程温度场和晶粒组织的数值模拟[J]. 铸造,2014,63(2):145-151. GUO Rufeng,LIU Lin,LI Yafeng,et al. Numerical simulation of temperature field and grain texture during casting single crystal superalloy DD403 with liquid metal cooling[J]. Foundry,2014,63(2):145-151. [67] 李亚峰. 镍基单晶高温合金涡轮叶片平台杂晶缺陷研究[D]. 西安:西北工业大学,2018. LI Yafeng. Study on stray grain formation in the platform of ni-based single crystal superalloys turbine blade[D]. Xi’an:Northwestern Polytechnical University,2018. [68] 卢玉章. 定向凝固过程工艺参数优化的数值模拟与实验研究[D]. 北京:中国科学院大学,2015. LU Yuzhang. Simulation and experimental study for parameter optimization in directional solidification process[D]. Beijing:University of Chinese Academy of Sciences,2015. [69] CHUBIN Y,LIN L,NING L,et al. Orientation characteristics of single crystal superalloys with different preparation methods[J]. Rare Metal Materials and Engineering,2017,46(4):912-916. [70] 张健,王莉,王栋,等. 镍基单晶高温合金的研发进展[J]. 金属学报,2019,55(9):1077-1094. ZHANG Jian,WANG Li,WANG Dong,et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica,2019,55(9):1077-1094. [71] MACKAY R A,MAIER R D. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals[J]. Metallurgical Transactions A,1982,13(10):1747-1754. [72] 郝红全. 单晶高温合金铸件的凝固行为及缺陷形成机制研究[D]. 北京:中国科学院大学,2013. HAO Hongquan. Investigation of the solidification behavior and the defects formation mechanisms of the single crystal castings[D]. Beijing:University of Chinese Academy of Sciences,2013. [73] GAO S,LIU L,WANG N,et al. Grain selection during casting Ni-base,single-crystal superalloys with spiral grain selector[J]. Metallurgical and Materials Transactions A,2012,43(10):3767-3775. [74] ARDAKANI M,D’SOUZA N,WAGNER A,et al. Competitive grain growth and texture evolution during directional solidification of superalloys[J]. TMS Superalloys,2000,10:219-228. [75] ESAKA H,SHINOZUKA K,TAMURA M. Analysis of single crystal casting process taking into account the shape of pigtail[J]. Materials Science and Engineering:A,2005,413:151-155. [76] DRESHFIELD R L,JOHNSON W A,MAURER G A. Effects of tin on microstructure and mechanical behavior of Inconel 718[C]//TMS-AIME Fall Meeting. 1984(E-2329). [77] SHEN J,XU Z,LU Y,et al. Reaction of Ni-based superalloy with liquid Sn during liquid-metal-cooled directional solidification[J]. Metallurgical and Materials Transactions A,2018,49(9):4003-4011. [78] 张健,申健,卢玉章,等. 燃气轮机用大型定向结晶铸件制备及组织与性能研究[J]. 金属学报,2010,46(11):1322-1326. ZHANG Jian,SHEN Jian,LU Yuzhang,et al. Processing,microstructure and mechanical properties of large directionally solidified castings for industrial gas turbine applications[J]. Acta Metallurgica Sinica,2010,46(11):1322-1326. [79] LIU L,HUANG T,ZHANG J,et al. Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification[J]. Materials Letters,2007,61(1):227-230. [80] STEUER S,VILLECHAISE P,POLLOCK T,et al. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy[J]. Materials Science and Engineering:A,2015,645:109-115. [81] STEIN C A,CERRONE A,OZTURK T,et al. Fatigue crack initiation,slip localization and twin boundaries in a nickel-based superalloy[J]. Current Opinion in Solid State and Materials Science,2014,18(4):244-252. [82] 闫晓军,聂景旭. 涡轮叶片疲劳[M]. 北京:科学出版社,2014. YAN Xiaojun,NIE Jingxu. Turbine blade fatigue[M]. Beijing:Science Press,2014. [83] 刘昌奎,杨胜,何玉怀,等. 单晶高温合金断裂特征[J]. 失效分析与预防,2010,5(4):225-230. LIU Changkui,YANG Sheng,HE Yuhuai,et al. Fracture features of single crystal superalloys[J]. Failure analysis and Prevention,2010,5(4):225-230. [84] 刘维维,唐定中,李嘉荣,等. 抽拉速率对DD6单晶高温合金650℃低周疲劳性能的影响[J]. 航空材料学报,2012,32(2):8-12. LIU Weiwei,TANG Dingzhong,LI Jiarong,et al. Effects of withdrawing rate on low cycle fatigue properties of single crystal superalloy DD6 at 650℃[J]. Journal of Aeronautical Materials,2012,32(2):8-12. [85] 史振学,李嘉荣,刘世忠,等. 第二代单晶高温合金的低周疲劳行为[J]. 材料热处理学报,2011,32(5):41-45. SHI Zhenxue,LI Jiarong,LIU Shizhong,et al. Low cycle fatigue behavior of a second generation single crystal superalloy DD6 at high temperature[J]. Transactions of Materials and Heat Treatment,2011,32(5):41-45. [86] 黄志伟,袁福河,王中光,等. M38镍基高温合金高温低周疲劳性能及断裂机制[J]. 金属学报,2007(10):1025-1030. HUANG Zhiwei,YUAN Fuhe,WANG Zhongguang,et al. Low cycle fatigue properties and fracture mechanisms of M38 nickel base superalloy at high temperature[J]. Acta Metallurgica Sinica,2007(10):1025-1030. [87] FAN Z D,WANG D,LIU C,et al. Low-cycle fatigue properties of Nickel-based superalloys processed by high-gradient directional solidification[J]. Acta Metallurgica Sinica(English Letters),2017,30(9):878-886. [88] 史振学,王效光,刘世忠,等. DD9单晶高温合金在800℃的高周旋弯疲劳性能[J]. 机械工程材料,2016,40(1):16-19,24. SHI Zhenxue,WANG Xiaoguang,LIU Shizhong,et al. Rotary bending high cycle fatigue properties of DD9 single crystal superalloy at 800℃[J]. Materials for Mechanical Engineering,2016,40(1):16-19,24. [89] 韩国明,张振兴,李金国,等. DD98M镍基单晶高温合金900℃高周疲劳行为[J]. 金属学报,2012,48(2):170-175. HAN Guoming,ZHANG Zhenxing,LI Jinguo,et al. High cycle fatigue behavior of a nickel-based single crystal superalloy DD98m at 900℃[J]. Acta metallurgica Sinica,2012,48(2):170-175. [90] 黄亚奇,王栋,卢玉章,等. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为[J]. 材料研究学报,2021,35(7):510-516. HUANG Yaqi,WANG Dong,LU Yuzhang,et al. Fatigue crack initiation behavior at intermediate temperature under high stress amplitude for single crystal superalloy DD413[J]. Chinese Journal of Materials Research,2021,35(7):510-516. [91] WASSON A J,FUCHS G E. The effect of carbide morphologies on elevated temperature tensile and fatigue behavior of a modified single crystal Ni-base superalloy[C]//Proceeding at Conference,Superalloy. 2008:489-497. [92] 李嘉荣,谢洪吉,韩梅,等. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报,2019,55(9):1195-1203. LI Jiarong,XIE Hongji,HAN Mei,et al. High cycle fatigue behavior of second generation single crystal superalloy[J]. Acta Metallurgica Sinica,2019,55(9):1195-1203. [93] FRITZEMEIER L. The influence of high thermal gradient casting,hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy[J]. Superalloys,1988,1988:265-274. |
[1] | 孔玲, 王玉辉, 杨浩坤, 彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展[J]. 机械工程学报, 2024, 60(8): 34-47. |
[2] | 任志英, 黄子豪, 方荣政, 王秦伟, 莫继良, 秦红玲. 金属橡胶无序式网格互穿结构的热力学性能研究[J]. 机械工程学报, 2024, 60(8): 165-175. |
[3] | 李力, 王一轩, 罗芬, 张文涛, 赵巍, 李小强. 钎焊时间对TiH2-65Ni+TiB2钎料钎焊连接TiAl合金接头的影响[J]. 机械工程学报, 2024, 60(8): 176-185. |
[4] | 顾玉芬, 鲁娜, 石玗, 孙青岭. 16MnDR钢焊接接头组织特性及在氢氟酸环境中的腐蚀行为[J]. 机械工程学报, 2024, 60(8): 196-203. |
[5] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[6] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[7] | 鲍鑫宇, 麻永林, 程桥, 苏怡卉, 王杰, 邢淑清. 脉冲磁场熔体处理对Al-Si-Mg-Cu-Ni合金DC铸造凝固组织和力学性能的影响[J]. 机械工程学报, 2024, 60(6): 279-286. |
[8] | 周甜, 蔡力勋, 韩光照. 用于延性材料力学性能测定的圆柱平面-小冲杆试验新方法与应用[J]. 机械工程学报, 2024, 60(4): 316-325. |
[9] | 高强, 王健, 张严, 郑旭阳, 吕昊, 殷国栋. 拓扑优化方法及其在运载工程中的应用与展望[J]. 机械工程学报, 2024, 60(4): 369-390. |
[10] | 陈建超, 孙志广, 刘博玮, 丁明超, 王加春, 郭保苏. 基于拓扑优化的无竖杆体面心立方点阵结构设计与试验研究[J]. 机械工程学报, 2024, 60(23): 270-277. |
[11] | 王颖, 木瑞洁, 牛士玉, 孙孔波, 杨振文. 高熵碳化物陶瓷及其钎焊接头的组织和力学性能[J]. 机械工程学报, 2024, 60(22): 76-85. |
[12] | 王鹏程, 李锦政, 刘维瀚, 陈海燕, 李文亚. Al0.3CoCrFeNi高熵合金与YG15硬质合金钎焊接头组织及力学性能研究[J]. 机械工程学报, 2024, 60(22): 86-93. |
[13] | 乔宇, 曹睿, 南灏, 闫英杰. FeCuNiTiAl高熵合金中间层连接铝/钛异种金属电阻点焊接头的组织与力学性能[J]. 机械工程学报, 2024, 60(22): 94-105. |
[14] | 唐九兴, 石磊, 武传松, 吴明孝, 高嵩. 中厚板铝/铜异种金属双面搅拌摩擦接头微观组织与力学性能[J]. 机械工程学报, 2024, 60(20): 88-98. |
[15] | 荣鹏, 成靖, 邓鸿文, 陶常安, 高川云, 冉先喆, 程序, 汤海波, 刘栋. 不同热处理对激光定向能量沉积制造TC4钛合金组织和拉伸性能的影响[J]. 机械工程学报, 2024, 60(20): 99-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||