• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (23): 270-277.doi: 10.3901/JME.2024.23.270

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于拓扑优化的无竖杆体面心立方点阵结构设计与试验研究

陈建超1,2, 孙志广1, 刘博玮1, 丁明超1, 王加春1,2, 郭保苏1,2   

  1. 1. 燕山大学机械工程学院 秦皇岛 066004;
    2. 河北省重型智能制造装备技术创新中心 秦皇岛 066004
  • 收稿日期:2024-01-16 修回日期:2024-07-05 出版日期:2024-12-05 发布日期:2025-01-23
  • 作者简介:陈建超,男,1984年出生,博士,副教授,硕士研究生导师。主要研究方向为增材和精密制造技术。E-mail:chenjc@ysu.edu.cn;王加春(通信作者),男,1968年出生,博士,教授,硕士研究生导师。主要研究方向为高效加工技术、增减材复合制造技术。E-mail:wjczth@ysu.edu.cn
  • 基金资助:
    河北省自然科学基金(E2021203185)和河北省高等学校科学研究青年拔尖人才(BJ2021045)资助项目。

Design and Experimental Study of Non-Vertical Struts Body and Face- Centered-Cubic Lattice Structure Based on Topology Optimization

CHEN Jianchao1,2, SUN Zhiguang1, LIU Bowei1, DING Mingchao1, WANG Jiachun1,2, GUO Baosu1,2   

  1. 1. School of Mechanical Engineer, Yanshan University, Qinhuangdao 066004;
    2. Hebei Heavy Intelligent Manufacturing Equipment Technology Innovation Center, Qinhuangdao 066004
  • Received:2024-01-16 Revised:2024-07-05 Online:2024-12-05 Published:2025-01-23

摘要: 现有点阵结构设计方法较少考虑晶胞结构实际受力工况,难以发挥出点阵结构的最佳性能。针对该问题提出基于拓扑优化的点阵结构设计方法,建立了适用于不同工况背景的优化模型,得到基于拓扑优化的多载荷、多约束优化列式。基于该列式提出了适应受力条件的点阵晶胞结构设计方法,构建了基于压缩工况条件下的新型无竖杆体面心立方点阵(Non-vertical struts body and face-centered cubic,NVBFCC)结构,建立了NVBFCC相对密度理论模型和等效力学模型,研究了晶胞的梁、杆尺寸对晶胞体积分数和结构强度的影响规律。完成了该点阵结构的准静态压缩试验和有限元力学仿真分析,结果验证了相对密度理论模型和等效力学模型的准确性,给出了梁、杆最优尺寸确定原则,实验表明较传统体面心立方晶胞结构,NVBFCC抗压强度和等效弹性模量分别高出136%、100%,显示所提出方法生成的点阵结构有着更优异的性能。

关键词: 点阵结构, 力学性能, 拓扑优化, 增材制造, 轻量化设计

Abstract: The existing design methods for lattice structures rarely take the actual stress conditions of the lattice structure into account, which makes it difficult to achieve their optimal performance. A topology optimization (TO) based lattice structure design method is thus proposed to address this issue, and an optimization model suitable for different load conditions is established. A multiple load and constraints optimization formulation based on TO is obtained, based on which a lattice structure design method for various load conditions is then proposed. A new lattice structure named NVBFCC is constructed under compression load condition. The relative density theoretical model and equivalent mechanical model of NVBFCC are established, and the influence of the size of the lattice beam and rod on the volume fraction and structural strength of the lattice is studied. The quasi-static compression tests and finite element analysis of the lattice structure are completed. The results validate the accuracy of the models proposed, and the principle for determining the optimal size of beams and rods is given. The compressive strength and equivalent elastic modulus of NVBFCC are 136% and 100% higher than that of the FBCCZ, respectively, exhibiting a superior performance.

Key words: lattice structure, mechanical properties, topology optimization, additive manufacturing, lightweight design

中图分类号: