• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (12): 191-203.doi: 10.3901/JME.2025.12.191

• 运载工程 • 上一篇    

扫码分享

基于深度强化学习的跟驰场景中燃料电池混合动力汽车多目标能量管理研究

曹延旭, 魏中宝, 宋若旸, 何洪文   

  1. 北京理工大学机械与车辆学院 北京 100081
  • 发布日期:2025-08-07
  • 作者简介:曹延旭,男,2001年出生。主要研究方向为燃料电池混合动力车辆能量管理与优化控制。E-mail:3120230330@bit.edu.cn;魏中宝(通信作者),男,1988年出生,博士,教授,博士研究生导师。主要研究方向为新能源汽车、动力电池系统管理与控制和混合动力车辆能量管理。E-mail:weizb@bit.edu.cn;宋若旸,女,1996年出生,博士研究生。主要研究方向为燃料电池系统的热管理与能量管理。E-mail:songry@bit.edu.cn;何洪文,男,1975 年出生,博士,教授,博士研究生导师。主要研究方向为新能源汽车综合控制。E-mail:hwhebit@bit.edu.cn

Research on Multi-objective EMS of Fuel Cell Hybrid Electric Vehicle under Car Following Scenario Based on Deep Reinforcement Learning

CAO Yanxu, WEI Zhongbao, SONG Ruoyang, HE Hongwen   

  1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081
  • Published:2025-08-07

摘要: 为了提高燃料电池混合动力汽车(Fuel cell hybrid electric vehicle,FCHEV)的经济性、动力性与安全性,对跟驰场景下混合动力系统输出功率分配的能量管理问题进行研究。跟驰场景中的FCHEV多目标能量管理研究分为上层自适应巡航控制策略(Adaptive cruise control,ACC)和下层能量管理策略(Energy management strategy,EMS)。所提出的上层ACC策略,通过深度确定性策略梯度(Deep deterministic policy gradient,DDPG)将跟驰安全性、驾驶舒适性和经济性纳入跟驰优化约束范围,控制后车加速度实现对前车的跟驰。所提出的下层EMS策略,将氢气消耗、荷电状态(State of charge,SOC)约束、锂电池(Lithium ion battery,LIB)温度和动力系统寿命控制为优化目标,基于深度强化学习实现多目标的功率优化分配。通过将ACC和EMS分层耦合,其中ACC提供给EMS车辆运行的需求功率,EMS反馈氢气消耗量,可以进一步提高跟驰场景的经济性,降低计算量。仿真结果表明,在所提出的上层跟驰控制下相对车速和跟驰距离误差分别为0.47 m∙s-1和1.14 m,具有良好的跟随性能;所提出的多目标EMS,相较于单目标策略,氢气消耗降低1.8%,具有更稳定的SOC控制效果,LIB的温升和寿命衰退分别降低了63%和83%,综合经济成本降低了51%;跟驰场景下,ACC与EMS耦合模型与传统ACC相比,氢气消耗降低2.9%,同时保障了跟驰过程的安全性、舒适性和经济性。

关键词: 燃料电池混合动力汽车, 深度强化学习, 跟驰控制, 能量管理

Abstract: In order to improve the economy and safety of fuel cell hybrid electric vehicle(FCHEV), the energy management of hybrid power system output power distribution under car following scenario was studied. The research on the multi-objective energy management of FCHEV under car following scenario was divided into upper adaptive cruise control(ACC) strategy and lower energy management strategy(EMS). The proposed upper ACC strategy takes car following safety, driving comfort and economy into the scope of car following optimization constraints through deep deterministic policy gradient(DDPG), through controlling the acceleration of the rear vehicle to achieve car following of the front vehicle. The proposed lower level EMS strategy takes hydrogen consumption, state of charge(SOC) constraints, temperature of Lithium Ion Battery(LIB) and power system life control as optimization objectives, and realizes multi-objective power optimization allocation based on deep reinforcement learning. By coupling ACC and EMS, in which ACC provides EMS with the required power for vehicle movement, and EMS feeds back the hydrogen consumption, the economy of car following scenario can be further improved and the amount of calculation can be reduced. The simulation results show that under the proposed upper level car following control, the relative speed and following distance errors are 0.47 m∙s-1 and 1.14 m, respectively, indicating good following performance; The proposed multi-objective EMS can reduce hydrogen consumption by 1.8% compared with the single objective strategy, and has a more stable SOC performance. The LIB temperature rise and life degradation are reduced by 63% and 83% respectively, and the comprehensive economic cost is reduced by 51%; Under car following scenario, compared with the traditional ACC, the proposed ACC-EMS framework further reduces the hydrogen consumption by 2.9% to ensure the safety, comfort and economy of FCHEV during car following process.

Key words: fuel cell hybrid electric vehicle, deep reinforcement learning, car following control, energy management

中图分类号: