机械工程学报 ›› 2024, Vol. 60 ›› Issue (17): 40-62.doi: 10.3901/JME.2024.17.040
• 特邀专栏:面向人民生命健康的机器人技术 • 上一篇 下一篇
王翔宇1,2,3, 任帆1,2, 刘冲1,2, 许思昂1,2, 王龙昕1,2, 方勇纯1,2,3, 于宁波1,2,3, 韩建达1,2,3
收稿日期:
2023-08-07
修回日期:
2024-03-14
发布日期:
2024-10-21
作者简介:
王翔宇,男,1994年出生,博士,助理研究员。主要研究方向为经自然腔道手术机器人,非线性控制,运动规划。E-mail:wangxyu@nankai.edu.cn基金资助:
WANG Xiangyu1,2,3, REN Fan1,2, LIU Chong1,2, XU Siang1,2, WANG Longxin1,2, FANG Yongchun1,2,3, YU Ningbo1,2,3, HAN Jianda1,2,3
Received:
2023-08-07
Revised:
2024-03-14
Published:
2024-10-21
摘要: 软式内窥镜(简称软镜)是实现经自然腔道内镜手术(Natural orifice transluminal endoscopic surgery, NOTES)的关键器械,由于柔性镜体本身所具有的安全性高、可达范围广和运动灵活等优势,软镜操作技术已经被应用在越来越多种类的外科手术中。考虑到人工操作过程中存在难度大、学习周期长、人力成本高、依赖临床经验和易受有害辐射等问题,研发并利用软镜操作机器人代替人工操作,可以实现更加安全、精准、智能的NOTES手术。旨在总结当前软镜操作机器人在建模、控制与规划方面的研究现状,探讨相关技术的研究趋势和面临的挑战。介绍了国内外代表性软镜操作机器人系统,总结了现有软镜操作机器人系统的运动特点。从模型、控制和规划三个角度对当前的软镜操作机器人技术进行了详尽的研究现状综述。总结和分析了当前研究内容中的不足和自主化软镜操作技术发展所面临的挑战,并对软镜操作机器人的进一步研究方向进行展望。
中图分类号:
王翔宇, 任帆, 刘冲, 许思昂, 王龙昕, 方勇纯, 于宁波, 韩建达. 面向NOTES手术的软镜操作机器人技术进展[J]. 机械工程学报, 2024, 60(17): 40-62.
WANG Xiangyu, REN Fan, LIU Chong, XU Siang, WANG Longxin, FANG Yongchun, YU Ningbo, HAN Jianda. Advancement of Flexible Endoscopic Robots Technologies for NOTES[J]. Journal of Mechanical Engineering, 2024, 60(17): 40-62.
[1] LI Z, CHIU P W Y. Robotic endoscopy[J]. Visceral Medicine, 2018, 34(1):45-51. [2] HU Y, LI W, ZHANG L, et al. Designing, prototyping, and testing a flexible suturing robot for transanal endoscopic microsurgery[J]. IEEE Robotics and Automation Letters, 2019, 4(2):1669-1675. [3] 闫婧爽, 闫斌, 彭丽华. 消化内镜机器人的研究进展[J]. 转化医学杂志, 2021, 10(3):183-186. YAN Jingshuang, YAN Bin, PENG Lihua. Development of robotics in gastrointestinal endoscopy[J]. Translational Medicine Journal, 2021, 10(3):183-186. [4] SELEEM I, EL-HUSSIENY H, ISHII H. Recent developments of actuation mechanisms for continuum robots:a review[J]. International Journal of Control, Automation and Systems, 2023, 21(5):1592-1609. [5] PORE A, LI Z, DALL'ALBA D, et al. Autonomous navigation for robot-assisted intraluminal and endovascular procedures:a systematic review[J]. IEEE Transactions on Robotics, 2023, 39(4):2529-2548 [6] OMISORE O M, HAN S, XIONG J, et al. A review on flexible robotic systems for minimally invasive surgery[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(1):631-644. [7] NAZARI A A, ZAREINIA K, JANABI-SHARIFI F. Visual servoing of continuum robots:methods, challenges, and prospects[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18(3):e2384. [8] KIM J, MATHELIN D M, IKUTA K, et al. Advancement of flexible robot technologies for endoluminal surgeries[J]. Proceedings of the IEEE, 2022, 110(7):909-931. [9] DUPONT P E, NELSON B J, GOLDFARB M, et al. A decade retrospective of medical robotics research from 2010 to 2020[J]. Science Robotics, 2021, 6(60):eabi8017. [10] ATTANASIO A, SCAGLIONI B, MOMI D, et al. Autonomy in surgical robotics[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4:651-679. [11] DUPONT P E, SIMAAN N, CHOSET H, et al. Continuum robots for medical interventions[J]. Proceedings of the IEEE, 2022, 110(7):847-870. [12] BURGNER-KAHRS J, RUCKER D C, CHOSET H. Continuum robots for medical applications:a survey[J]. IEEE Transactions on Robotics, 2015, 31(6):1261-1280. [13] 张赫, 李海铭, 张佳闪, 等. 面向腔镜微创手术的连续体机械手关键技术与研究进展[J]. 机械工程学报, 2023, 59(19):44-64. ZHANG He, LI Haiming, ZHANG Jiashan, et al. Key technologies and research progress of continuum manipulators for minimally invasive laparoscopic surgery[J]. Journal of Mechanical Engineering, 2023, 59(19):44-64. [14] VITIELLO V, LEE S L, CUNDY T P, et al. Emerging robotic platforms for minimally invasive surgery[J]. IEEE Reviews in Biomedical Engineering, 2012, 6:111-126. [15] BURGNER J, RUCKER D C, GILBERT H B, et al. A telerobotic system for transnasal surgery[J]. IEEE Transactions on Mechatronics, 2014, 19(3):996-1006. [16] MADOGLIO A, ZAPPA F, MATTAVELLI D, et al. Robotics in endoscopic transnasal skull base surgery:literature review and personal experience[C]//Control Systems Design of Bio-Robotics and Bio-mechatronics with Advanced Applications, The Netherlands:Elsevier, Amsterdam, 2020:221-244. [17] TANUMA T, MORITA Y, DOYAMA H. Current status of transnasal endoscopy worldwide using ultrathin videoscope for upper gastrointestinal tract[J]. Digestive Endoscopy, 2016, 28:25-31. [18] SIMAAN N, XU K, WEI W, et al. Design and integration of a telerobotic system for minimally invasive surgery of the throat[J]. The International Journal of Robotics Research, 2009, 28(9):1134-1153. [19] HWANG M, KWON D S. K-FLEX:a flexible robotic platform for scar-free endoscopic surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16(2):e2078. [20] VILLARET A B, DOGLIETTO F, CAROBBIO A, et al. Robotic transnasal endoscopic skull base surgery:systematic review of the literature and report of a novel prototype for a hybrid system (Brescia endoscope assistant robotic holder)[J]. World Neurosurgery, 2017, 105:875-883. [21] WANG X, YAN J, MA X, et al. Hybrid-structure hand-held robotic endoscope for sinus surgery with enhanced distal dexterity[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(4):1863-1872. [22] PRAKASH U B, MATTHAY R A. Bronchoscopy[J]. Journal of Bronchology & Interventional Pulmonology, 1994, 1(4):340. [23] KENNEDY-METZ L R, MASCAGNI P, TORRALBA A, et al. Computer vision in the operating room:Opportunities and caveats[J]. IEEE Transactions on Medical Robotics and Bionics, 2021, 3(1):2-10. [24] AGRAWAL A, HOGARTH D K, MURGU S. Robotic bronchoscopy for pulmonary lesions:A review of existing technologies and clinical data[J]. Journal of Thoracic Disease, 2020, 12(6):3279. [25] GRAETZEL C, SHEEHY A, NOONAN D P. Robotic bronchoscopy drive mode of the Auris Monarch platform[C]//2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada:IEEE, 2019:3895-3901. [26] VALDASTRI P, SIMI M, WEBSTER III R J. Advanced technologies for gastrointestinal endoscopy[J]. Annual Review of Biomedical Engineering, 2012, 14:397-429. [27] ABBOTT D J, BECKE C, ROTHSTEIN R I, et al. Design of an endoluminal NOTES robotic system[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA:IEEE, 2007:410-416. [28] DONNO D A, ZORN L, ZANNE P, et al. Introducing STRAS:a new flexible robotic system for minimally invasive surgery[C]//2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany:IEEE, 2013:1213-1220. [29] PHEE S, KENCANA A, HUYNH V, et al. Design of a master and slave transluminal endoscopic robot for natural orifice transluminal endoscopic surgery[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2010, 224(7):1495-1503. [30] PHEE S J, LOW S C, HUYNH V, et al. Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery[C]//Proceedings of 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, MN, USA:IEEE, 2009:1192-1195. [31] 李言民, 郝思文, 杨臻达, 等. 主从式胃镜介入机器人系统[J]. 机器人, 2016, 38(1):107-114. LI Y, HAO S, YANG Z, et al. Robot-assisted master-slave system for gastroscope intervention[J]. ROBOT, 2016, 38(1):107-114. [32] MANFREDI L. Endorobots for colonoscopy:design challenges and available technologies[J]. Frontiers in Robotics and AI, 2021, 8:705454 [33] CIUTI G, SKONIECZNA-ŻYDECKA K, MARLICZ W, et al. Frontiers of robotic colonoscopy:a comprehensive review of robotic colonoscopes and technologies[J]. Journal of Clinical Medicine, 2020, 9(6):1648. [34] YEUNG C K, CHEUNG J L, SREEDHAR B. Emerging next-generation robotic colonoscopy systems towards painless colonoscopy[J]. Journal of Digestive Diseases, 2019, 20(4):196-205. [35] YOU H, BAE E, MOON Y, et al. Automatic control of cardiac ablation catheter with deep reinforcement learning method[J]. Journal of Mechanical Science and Technology, 2019, 33(11):5415-5423. [36] LEMKE M, BANWELL A, Rubinger N, et al. Colonoscopy trainers experience greater stress during insertion than withdrawal:Implications for endoscopic curricula[J]. Journal of the Canadian Association of Gastroenterology, 2021, 4(1):15-20. [37] AHMED R, SANTHIRAKUMAR K, BUTT H, et al. Colonoscopy technologies for diagnostics and drug delivery[J]. Medical Devices & Sensors, 2019, 2(3/4):e10041. [38] WERNLI K J, BRENNER A T, RUTTER C M, et al. Risks associated with anesthesia services during colonoscopy[J]. Gastroenterology, 2016, 150(4):888-894. [39] HASSAN C, SENORE C, MANES G, et al. Diagnostic yield and miss rate of endorings in an organized colorectal cancer screening program:the smart (study methodology for adr-related technology) trial[J]. Gastrointestinal Endoscopy, 2019, 89(3):583-590. [40] THAN M, WITHERSPOON J, SHAMI J, et al. Diagnostic miss rate for colorectal cancer:an audit[J]. Annals of Gastroenterology:Quarterly Publication of the Hellenic Society of Gastroenterology, 2015, 28(1):94-98. [41] EICKHOFF A, JAKOBS R, KAMAL A, et al. In vitro evaluation of forces exerted by a new computer-assisted colonoscope (the neoguide endoscopy system)[J]. Endoscopy, 2006, 38(12):1224-1229. [42] GLUCK N, MELHEM A, HALPERN Z, et al. A novel self-propelled disposable colonoscope is effective for colonoscopy in humans (with video)[J]. Gastrointestinal Endoscopy, 2016, 83(5):998-1004. [43] SHIKE M, FIREMAN Z, ELIAKIM R, et al. Sightline colonosight system for a disposable, powerassisted, non- fiber-optic colonoscopy (with video)[J]. Gastrointestinal Endoscopy, 2008, 68(4):701-710. [44] TUMINO E, PARISI G, BERTONI M, et al. Use of robotic colonoscopy in patients with previous incomplete colonoscopy[J]. European Review for Medical & Pharmacological Sciences, 2017, 21(4):819-826. [45] KUME K, KUROKI T, SUGIHARA T, et al. Development of a novel endoscopic manipulation system:the endoscopic operation robot[J]. World Journal of Gastrointestinal Endoscopy, 2011, 3(7):145-150. [46] KUME K, SAKAI N, GOTO T. Development of a novel endoscopic manipulation system:the endoscopic operation robot ver. 3[J]. Endoscopy, 2015, 47(9):815-819. [47] HERRELL S D, WEBSTER R, SIMAAN N. Future robotic platforms in urologic surgery:recent developments[J]. Current Opinion in Urology, 2014, 24(1):118-126. [48] TYSON M D, HUMPHREYS M R. Urological applications of natural orifice transluminal endoscopic surgery[J]. Nature Reviews Urology, 2014, 11(6):324-332. [49] BAZZI W M, RAHEEM O A, COHEN S A, et al. Natural orifice transluminal endoscopic surgery in urology:review of the world literature[J]. Urology Annals, 2012, 4(1):3279-3286. [50] CHEN Y, ZHANG S A, WU Z, et al. Review of surgical robotic systems for keyhole and endoscopic procedures:state of the art and perspectives[J]. Frontiers of Medicine, 2020, 14(4):382-403. [51] RASSWEILER J, FIEDLER M, CHARALAMPOGIANNIS N, et al. Robot-assisted flexible ureteroscopy:an update[J]. Urolithiasis, 2018, 46(1):69-77. [52] GANDAGLIA G, SCHATTEMAN P, NAEYER D G, et al. Novel technologies in urologic surgery:A rapidly changing scenario[J]. Current Urology Reports, 2016, 17(3):1-8. [53] 龙清志. European urology:一种新的机器人输尿管软镜:发展和早期临床研究(IDEAL stage 1-2b)[J]. 现代泌尿外科杂志, 2015, 20(2):131-132. LONG Q. European urology:a new robot for flexible ureteroscopy:development and early clinical results (IDEAL stage 1-2b)[J]. Journal of Modern Urology, 2015, 20(2):131-132. [54] GOLDMAN R E, BAJO A, MACLACHLAN L S, et al. Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention[J]. IEEE Transactions on Biomedical Engineering, 2012, 60(4):918-925. [55] ZHAO J, LI J, CUI L, et al. Design and performance investigation of a robot-assisted flexible ureteroscopy system[J]. Applied Bionics and Biomechanics, 2021, 2021:6911202. [56] 李建民, 张增玉, 赵建厂, 等. 基于视觉反馈的输尿管软镜机器人运动补偿策略[J]. 天津大学学报, 2021, 54(7):738-745. LI Jianmin, ZHANG Zengyu, ZHAO Jianchang, et al. Motion compensation strategy for robot-assisted flexible ureteroscopy based on visual feedback[J]. Journal of Tianjin University, 2021, 54(7):738-745. [57] 崔亮, 李建民, 殷小涛, 等. 机器人辅助输尿管软镜手术系统的研制及试验评价[J]. 临床泌尿外科杂志, 2018, 33(7):511-515. CUI Liang, LI Jianmin, YIN Xiaotao, et al. Design of robot-assisted flexible ureteroscopy and animal experiment[J]. Journal of Clinical Urology, 2018, 33(7):511-515. [58] 宣寒青, 徐云泽, 陈奇, 等. 新型经输尿管肾内介入诊疗机器人系统的研发及试验评价[J]. 临床泌尿外科杂志, 2021, 36(9):721-724. XUAN Hanqing, XU Yunze, CHEN Qi, et al. Development and in vivo experiment of a prototype robot for portable flexible ureteroscope[J]. Journal of Clinical Urology, 2021, 36(9):721-724. [59] SHU X, HUA P, WANG S, et al. Safety enhanced surgical robot for flexible ureteroscopy based on force feedback[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18(5):e2410. [60] WANG X, FANG Y, YU N, et al. Barrier function-based adaptive control of twisted tendon-sheath actuated system with unknown rigid-flexible coupling for robotic ureteroscopy[J]. IEEE/ASME Transactions on Mechatronics, 2023, doi:10.1109/TMECH.2023.3328055. [61] WANG X, HAN J, FANG Y. Modeling and robust adaptive control for tendon-driven with bending tip systems[C]//202127th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Shanghai, China:IEEE, 2021:18-23. [62] HAINES C S, LI N, SPINKS G M, et al. New twist on artificial muscles[J]. Proceedings of the National Academy of Sciences, 2016, 113(42):11709-11716. [63] SARLI N, GIUDICE G D, DE S, et al. TURBot:a system for robot-assisted transurethral bladder tumor resection[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(4):1452-1463. [64] ZHANG Q, PRENDERGAST J M, FORMOSA G A, et al. Enabling autonomous colonoscopy intervention using a robotic endoscope platform[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(6):1957-1968. [65] CHITALIA Y, JEONG S, DEATON N, et al. Design and kinematics analysis of a robotic pediatric neuroendoscope tool body[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2):985-995. [66] CHITALIA Y, JEONG S, YAMAMOTO K K, et al. Modeling and control of a 2-DoF meso-scale continuum robotic tool for pediatric neurosurgery[J]. IEEE Transactions on Robotics, 2021, 37(2):520-531. [67] ZHANG T, LIU M, LEI Y, et al. Analysis of dynamic friction and elongation characteristics of the tendon sheath system[C]//Proceedings of 14th International Conference of Intelligent Robotics and Applications (ICIRA), Yantai, China:Springer International Publishing, 2021:145-154. [68] TANG Y, PAN M, LIN Y, et al. Research on force and position control performance of the tendon sheath system with time-varying parameters and flexible robotic arms[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2023, 19(4):e2517. [69] HONG J, HONG D, KIM B G. Modeling backlash-like hysteresis of tendon sheath mechanism-pair[J]. Journal of Mechanisms and Robotics, 2020, 12(4):041012. [70] ZHANG Q, WANG X, TIAN M, et al. Modeling of novel compound tendon-sheath artificial muscle inspired by hill muscle model[J]. IEEE Transactions on Industrial Electronics, 2017, 65(8):6372-6381. [71] LEGRAND J, OURAK M, JAVAUX A, et al. From a disposable ureteroscope to an active lightweight fetoscope- characterization and usability evaluation[J]. IEEE Robotics and Automation Letters, 2018, 3(4):4359-4366. [72] DO T N, TJAHJOWIDODO T, LAU M W S, et al. Nonlinear friction modelling and compensation control of hysteresis phenomena for a pair of tendon-sheath actuated surgical robots[J]. Mechanical Systems and Signal Processing, 2015, 60:770-784. [73] WANG X, BIE D, HAN J, et al. Active modeling and compensation for the hysteresis of a robotic flexible ureteroscopy[J]. IEEE Access, 2020, 8:100620-100630. [74] ZHANG Z, ZHANG G, WANG S, et al. Hysteresis modeling and compensation for tendon-sheath mechanisms in robot-assisted endoscopic surgery based on the modified bouc-wen model with decoupled model parameters[J]. IEEE Transactions on Medical Robotics and Bionics, 2023, 5(2):218-229. [75] DO T, TJAHJOWIDODO T, LAU M, et al. Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems[J]. Mechatronics, 2014, 24(1):12-22. [76] REYNOLDS D, REPPERGER D, PHILLIPS C, et al. Modeling the dynamic characteristics of pneumatic muscle[J]. Annals of Biomedical Engineering, 2003, 31(3):310-317. [77] WANG X, YU N, HAN J, et al. Modeling and robust control for tendon-sheath artificial muscle system twist with time-varying parameters and input constraints:an exploratory research[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1):878-887. [78] SHEN X, WANG X, TIAN M, et al. Modeling and sensorless force control of novel tendon-sheath artificial muscle based on hill muscle model[J]. Mechatronics, 2019, 62:102243-102243. [79] WANG Z, WANG T, ZHAO B, et al. Hybrid adaptive control strategy for continuum surgical robot under external load[J]. IEEE Robotics and Automation Letters, 2021, 6(2):1407-1414. [80] KIM D, KIM H, JIN S, et al. Recurrent neural network with preisach model for configuration-specific hysteresis modeling of tendon-sheath mechanism[J]. IEEE Robotics and Automation Letters, 2022, 7(2):2763-2770. [81] GIORELLI M, RENDA F, CALISTI M, et al. Neural network and Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature[J]. IEEE Transactions on Robotics, 2015, 31(4):823-834. [82] GIORELLI M, RENDA F, CALISTI M, et al. Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space[J]. Bioinspiration & Biomimetics, 2015, 10(3):035006. [83] MAHLE J, KEISHNAN S, LASKEY M, et al. Learning accurate kinematic control of cable-driven surgical robots using data cleaning and Gaussian Process Regression[C]//Proceedings of 2014 IEEE International Conference on Automation Science and Engineering (CASE), Taiwan, China:IEEE, 2014:532-539. [84] XU W, CHEN J, LAU H Y K, et al. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(3):e1774. [85] LI X, CAO L, TIONG A M H, et al. Distal-end force prediction of tendonsheath mechanisms for flexible endoscopic surgical robots using deep learning[J]. Mechanism and Machine Theory, 2019, 134:323-337. [86] ROESTHUIS R J, JANSSEN S, MISRA S. On using an array of fiber Bragg grating sensors for closed-loop control of flexible minimally invasive surgical instruments[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan:IEEE, 2013:2545-2551. [87] SLAWINSKI P R, SIMAAN N, OBSTEIN K L, et al. Sensorless estimation of the planar distal shape of a tip-actuated endoscope[J]. IEEE Robotics and Automation Letters, 2019, 4(4):, 3371-3377. [88] XU W, POON C C Y, YAM Y, et al. Motion compensated controller for a tendon-sheath-driven flexible endoscopic robot[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(1):e1747. [89] TANG Y, PAN M, LIN Y, et al. Research on force and position control performance of the tendon sheath system with time-varying parameters and flexible robotic arms[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2023:e2517. [90] ZUO S, CHEN T, CHEN X, et al. A wearable hands-free human-robot interface for robotized flexible endoscope[J]. IEEE Robotics and Automation Letters, 2022, 7(2):3953-3960. [91] HUANG Y, LAI W, CAO L, et al. Design and evaluation of a foot-controlled robotic system for endoscopic surgery[J]. IEEE Robotics and Automation Letters, 2021, 6(2):2469-2476. [92] HUANG Y, LAI W, CAO L, et al. A three-limb teleoperated robotic system with foot control for flexible endoscopic surgery[J]. Annals of Biomedical Engineering, 2021, 49:2282-2296. [93] OTT L, NAGEOTTE F, ZANNE P, et al. Robotic assistance to flexible endoscopy by physiological-motion tracking[J]. IEEE Transactions on Robotics, 2011, 27(2):346-359. [94] MA X, SONG C, CHIU P W, et al. Visual servo of a 6-DOF robotic stereo flexible endoscope based on da Vinci Research Kit (dVRK) system[J]. IEEE Robotics and Automation Letters, 2020, 5(2):820-827. [95] SAINI S, ORLANDO M F, PATHAK P M. Adaptive control of a master-slave based robotic surgical system with haptic feedback[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(2):1125-1138. [96] MA X, WANG P, YE M, et al. Shared autonomy of a flexible manipulator in constrained endoluminal surgical tasks[J]. IEEE Robotics and Automation Letters, 2019, 4(3):3106-3112. [97] WANG X, YU N, HAN J, et al. Modeling and adaptive control for tendon sheath artificial muscle actuated bending-tip systems with unknown parameters and input hysteresis:An experimental research[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10):10588-10597. [98] MO H, WEI R, OUYANG B, et al. Control of a flexible continuum manipulator for laser beam steering[J]. IEEE Robotics and Automation Letters, 2021, 6(2):1074-1081. [99] DO T, TJAHJOWIDODO T, LAU M, et al. Adaptive control for enhancing tracking performances of flexible tendon-sheath mechanism in natural orifice transluminal endoscopic surgery[J]. Mechatronics, 2015, 28:67-78. [100] ZHANG Q, SHEN D, TIAN M, et al. Model-based force control of a tendon-sheath actuated slender gripper without output feedback[J]. Journal of Intelligent & Robotic Systems, 2022, 106(4):79. [101] OGAWA K, IBRAHIM M Y, OHNISHI K. Development of flexible haptic forceps based on the electrohydraulic transmission system[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12):5256-5267. [102] WANG X, YU N, BIE D, et al. A novel ESMF-based observer and control scheme for a type of tendon-sheath hysteresis system[J]. Automatica, 2021, 131:109800. [103] LI Y, LIU H, HAO S, et al. Design and control of a novel gastroscope intervention mechanism with circumferentially pneumatic-driven clamping function[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(1):1745-1748. [104] PORTO R A, NAGEOTTE F, ZANNE P, et al. Position control of medical cable-driven flexible instruments by combining machine learning and kinematic analysis[C]//Proceedings of 2019 International Conference on Robotics and Automation. Montreal, QC, Canada:IEEE, 2019:7913-7919. [105] LEE D G, BAEK D, KIM H, et al. Learning-based discrete hysteresis classifier using wire tension and compensator for flexible endoscopic surgery robots[J]. International Journal of Precision Engineering and Manufacturing, 24(1):83-94. [106] BAEK D, SEO J H, KIM J, et al. Hysteresis compensator with learning-based hybrid joint angle estimation for flexible surgery robots[J]. IEEE Robotics and Automation Letters, 2020, 5(4):6837-6844. [107] JIANG W, YU T, HE X, et al. Data-driven modeling the nonlinear backlash of steerable endoscope under a large deflection cannulation in ERCP surgery[C]//Proceedings of 2021 IEEE International Conference on Real-time Computing and Robotics. Xining, China:IEEE, 2021:39-44. [108] LI X, CAO L, TIONG A M H, et al. Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning[J]. Mechanism and Machine Theory, 2019, 134:323-337. [109] BRUNO D, CALINON S, CALDWELL D G. Learning autonomous behaviours for the body of a flexible surgical robot[J]. Autonomous Robots, 2017, 41:333-347. [110] LI W, SONG C, LI Z. An accelerated recurrent neural network for visual servo control of a robotic flexible endoscope with joint limit constraint[J]. IEEE Transactions on Industrial Electronics, 2019, 67(12):10787-10797. [111] LI W, CHIU W Y, LI Z. An accelerated finite-time convergent neural network for visual servoing of a flexible surgical endoscope with physical and RCM constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12):5272-5284. [112] CUI Z, LI W, ZHANG X, et al. Accelerated dual neural network controller for visual servoing of flexible endoscopic robot with tracking error, joint motion, and RCM constraints[J]. IEEE Transactions on Industrial Electronics, 2021, 69(9):9246-9257. [113] CUI Z, LI J, LI W, et al. Fast convergent antinoise dual neural network controller with adaptive gain for flexible endoscope robots[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, doi:10.1109/TNNLS.2022.3218461. [114] BAEK D, NHO Y H, KWON D S. ViO-Com:feed-forward compensation using vision-based optimization for high-precision surgical manipulation[J]. IEEE Robotics and Automation Letters, 2022, 7(1):263-270. [115] LI J, HUANG Y, ZHANG X, et al. An autonomous surgical instrument tracking framework with a binocular camera for a robotic flexible laparoscope[J]. IEEE Robotics and Automation Letters, 2023, 8(7):4291-4298. [116] HUANG Y, LI J, ZHANG X, et al. A surgeon preference-guided autonomous instrument tracking method with a robotic flexible endoscope based on dVRK platform[J]. IEEE Robotics and Automation Letters, 2022, 7(2):2250-2257. [117] HE T, HONG L, CHEN D, et al. Reliable path for virtual endoscopy:ensuring complete examination of human organs[J]. IEEE Transactions on Visualization and Computer Graphics, 2001, 7(4):333-342. [118] GOUGH E, CONN A T, ROSSITER J. Planning for a tight squeeze:navigation of morphing soft robots in congested environments[J]. IEEE Robotics and Automation Letters, 2021, 6(3):4752-4757. [119] GIBBS J D, WILLIAM E H. 3D path planning and extension for endoscopic guidance[C]//Medical Imaging 2007:Visualization and Image-Guided Procedures. San Diego, CA, United States:SPIE, 2007(6509):554-566. [120] GIBBS J D, GRAHAM M W, YU K C, et al. Integrated system for planning peripheral bronchoscopic procedures[C]//Medical Imaging 2008:Physiology, Function, and Structure from Medical Images. San Diego, CA, United States:SPIE, 2008(6916):154-168. [121] NIYAZ S, KUNTZ A, SALZMAN O, et al. Optimizing motion-planning problem setup via bounded evaluation with application to following surgical trajectories[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China:IEEE, 2019:1355-1362. [122] ZENG Z, HE Y, ZHANG Q, et al. Approach and control for robot assisted sinus surgery[C]//2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). Macau, China:IEEE, 2017:983- 988. [123] HE Y, ZHANG P, QI X, et al. Endoscopic path planning in robot-assisted endoscopic nasal surgery[J]. IEEE Access, 2020, 8:17039-17048. [124] CIOBIRCA C, LANGO T, GRUIONU G, et al. A new procedure for automatic path planning in bronchoscopy[J]. Materials Today:Proceedings, 2018, 5(13):26513-26518. [125] HUANG H E, YEN S Y, CHU C F, et al. Autonomous navigation of a magnetic colonoscope using force sensing and a heuristic search algorithm[J]. Scientific reports, 2021, 11(1):16491. [126] IDELSON Y, MEDINA. Motion planning for serial mechanisms based on precurved flexible beams[J]. IEEE Access, 2022, 10:124979-124989. [127] LUO M, WAN Z, SUN Y, et al. Motion planning and iterative learning control of a modular soft robotic snake[J]. Frontiers in Robotics and AI, 2020, 7:599242. [128] STENTZ, ANTHONY. Optimal and efficient path planning for partially-known environments[C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA:IEEE, 1994:3310-3317. [129] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1):90-98. [130] MARTIN J W, SCAGLIONI B, NORTON J C, et al. Enabling the future of colonoscopy with intelligent and autonomous magnetic manipulation[J]. Nature Machine Intelligence, 2020, 2(10):595-606. [131] ROSELL J, PÉREZ A, CABRAS P, et al. Motion planning for the virtual bronchoscopy[C]//2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA:IEEE, 2012:2932-2937. [132] SHAHZAD K, IQBAL S, BLOODSWORTH P. Points-based safe path planning of continuum robots[J]. International Journal of Advanced Robotic Systems, 2015, 12(7):107. [133] WANG Y, HAN J, PAN J, et al. Rapid path extraction and three-dimensional roaming of the virtual endonasal endoscope[J]. Chinese Journal of Electronics, 2021, 30(3):397-405. [134] GEIGER B, KIRALY A P, NAIDICH D P, et al. Virtual bronchoscopy of peripheral nodules using arteries as surrogate pathways[J]. Medical Imaging 2005:Physiology, Function, and Structure from Medical Images, 2005, 5746:352-360. [135] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high- dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4):566-580. [136] BAEK D, HWANG M, KIM H, et al. Path planning for automation of surgery robot based on probabilistic roadmap and reinforcement learning[C]//2018 15th International Conference on Ubiquitous Robots (UR). Honolulu, HI, USA:IEEE, 2018:342-347. [137] LAVALLE S M, KUFFNER J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research, 2001, 20(5):378-400. [138] AGUILAR W G, ABAD V, RUIZ H, et al. RRT-based path planning for virtual bronchoscopy simulator[C]//Augmented Reality, Virtual Reality, and Computer Graphics:4th International Conference. Ugento, Italy:Springer, 2017:155-165. [139] AGUILAR W G, ABAD V, RUIZ H, et al. Virtual bronchoscopy motion planner[C]//2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Saint Paul, MN, USA:IEEE, 2017:1-4. [140] CUI Z, HE Y, ZHANG P, et al. Virtual reality navigation system of nasal endoscopy with real surface texture information[C]//2021 IEEE International Conference on Real-time Computing and Robotics (RCAR). Xining, China:IEEE, 2021:135-140. [141] YANG F, DAI Y, ZHANG J, et al. Path planning of flexible ureteroscope based on CT Image[C]//2019 Chinese Control Conference (CCC). Guangzhou, China:IEEE, 2019:4667-4672. [142] WANG J, JIA X, ZHANG T, et al. Deep neural network enhanced sampling- based path planning in 3D space[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19(4):3434-3443. [143] PORE A, FINOCCHIARO M, DALL'ALBA D, et al. Colonoscopy navigation using end-to-end deep visuomotor control:a user study[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Kyoto, Japan:IEEE, 2022:9582-9588. [144] QI F, JU F, BAI D, et al. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15(4):e2007. [145] WANG X, YU N, HAN J, et al. Time-optimal synchronous terminal trajectory planning for coupling motions of robotic flexible endoscope[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Kyoto, Japan:IEEE, 2022:5901-5906. [146] DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41. [147] CHEN X, JIANG Y. Three dimensional path planning of snake-arm robot based on improved ant colony algorithm[C]//2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Baishan, China:IEEE, 2022:888-892. [148] CHEN Y, XU W, LI Z, et al. Safety-enhanced motion planning for flexible surgical manipulator using neural dynamics[J]. IEEE Transactions on Control Systems Technology, 2016, 25(5):1711-1723 |
[1] | 杜国锋, 赵萌, 武建昫, 张东. 基于视觉的闭链多足机器人自主运动控制方法[J]. 机械工程学报, 2024, 60(19): 62-70. |
[2] | 关海杰, 王博洋, 龚建伟, 陈慧岩. 面向异构车辆的统一运动规划方法[J]. 机械工程学报, 2024, 60(18): 288-298. |
[3] | 高镇海, 于桐, 孙天骏. 考虑社会性行为的自动驾驶运动规划研究综述[J]. 机械工程学报, 2024, 60(10): 112-128. |
[4] | 郄天琪, 王伟达, 杨超, 李颖, 项昌乐. 面向分体式飞行汽车自主对接的自动驾驶底盘运动规划方法研究[J]. 机械工程学报, 2024, 60(10): 235-244. |
[5] | 赵锦涛, 李亮, 薛仲瑾, 张志煌. 基于混合A星的停车场内巡航分层运动规划方法[J]. 机械工程学报, 2023, 59(24): 290-298. |
[6] | 田大可, 郭振伟, 金路, 范小东, 刘荣强. 模块化可展天线机构展开动力学建模与运动规划[J]. 机械工程学报, 2023, 59(17): 56-66. |
[7] | 陈晋市, 张淼淼, 毕秋实, 李永奇, 霍东阳, 齐洪阳. 面向自主作业的挖掘机多目标最优挖掘运动规划[J]. 机械工程学报, 2022, 58(7): 237-245. |
[8] | 阳鑫, 唐小林, 杨凯, 徐正平, 胡晓松. 极限工况下无人驾驶车辆运动规划策略研究[J]. 机械工程学报, 2022, 58(22): 349-359. |
[9] | 赵子铭, 李晔卓, 姚燕安, 李锐明, 张倩倩. 6-URU支链四面体移动机构的越障步态规划[J]. 机械工程学报, 2021, 57(23): 85-96. |
[10] | 单开正, 于海涛, 韩亮亮, 王圣军, 李君, 高海波, 邓宗全. 近似直驱双足机器人跳跃运动非线性优化及试验验证[J]. 机械工程学报, 2021, 57(13): 153-162,171. |
[11] | 周坤, 李川, 李超, 朱秋国. 面向未知复杂地形的四足机器人运动规划方法[J]. 机械工程学报, 2020, 56(2): 210-219. |
[12] | 白有盾, 陈新, 杨志军. 考虑阻尼衰减的点位操作时间最优运动规划[J]. 机械工程学报, 2019, 55(5): 104-112. |
[13] | 关英姿, 刘文旭, 焉宁, 宋春林. 空间多机器人协同运动规划研究[J]. 机械工程学报, 2019, 55(12): 37-43. |
[14] | 王俊刚, 汤磊, 谷国迎, 朱向阳. 超冗余度机械臂跟随末端轨迹运动算法及其性能分析[J]. 机械工程学报, 2018, 54(3): 18-25. |
[15] | 余联庆, 枚元元, 李琳, 王玉金, 吴昌林. 闭链弓形五连杆越障能力分析与运动规划*[J]. 机械工程学报, 2017, 53(7): 69-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||