• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (19): 62-70.doi: 10.3901/JME.2024.19.062

• 机器人及机构学 • 上一篇    下一篇

扫码分享

基于视觉的闭链多足机器人自主运动控制方法

杜国锋1, 赵萌2, 武建昫2, 张东1   

  1. 1. 北京化工大学信息科学与技术学院 北京 100029;
    2. 北京交通大学机械与电子控制工程学院 北京 100044
  • 收稿日期:2023-10-19 修回日期:2024-04-18 出版日期:2024-10-05 发布日期:2024-11-27
  • 作者简介:杜国锋,男,1998年出生,博士研究生。主要研究方向为足式机器人视觉与运动控制。E-mail:2023400216@buct.edu.cn;张东(通信作者),男,1992年出生,博士,副教授,硕士研究生导师。主要研究方向为机器人机构设计与运动控制。E-mail:zhang_dong@buct.edu.cn
  • 基金资助:
    北京市自然科学基金小米联合基金(L223019)和北京市自然科学基金(3242011)资助项目。

Vision-based Autonomous Motion Control Method for Closed-chain Multi-legged Robot

DU Guofeng1, ZHAO Meng2, WU Jianxu2, ZHANG Dong1   

  1. 1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029;
    2. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044
  • Received:2023-10-19 Revised:2024-04-18 Online:2024-10-05 Published:2024-11-27

摘要: 闭链多足机器人环境适应性强、稳定性高,具备复杂户外环境下运动的潜力,然而现有基于模型的控制方法难以主动获取地形信息,在复杂户外环境中自主行走难度大;基于视觉的方法能够主动获取环境信息,但难以根据地形自主切换步态。为此,提出了基于视觉的闭链多足机器人自主运动控制方法,建立了从视觉图像到步态的直接映射。主要内容包括:通过运动学分析和数据拟合建立运动学模型和越障策略;采用融合YOLACT++的地形可通行域划分算法,基于中点像素采样法在可通域内生成导航路径。为验证所提方法,搭建了多地形组合仿真场景和实际场景并进行实验,结果表明闭链多足机器人能够在陌生环境下自主行走,且能够根据地形切换步态。

关键词: 闭链多足机器人, 图像分割, 越障策略, 运动规划

Abstract: Closed-chain multi-legged robots have strong environmental adaptability and high stability.They have the potential to move in complex outdoor environments.However, existing model-based control methods are difficult to use in actively obtaining terrain information and to walk autonomously in complex outdoor scenarios.Vision-based methods are able to acquire environmental information actively, but the robot has difficult in switching gaits autonomously according to the terrain.With regards to this, a vision-based closed-chain autonomous motion control method for multi-legged robots is proposed, and a mapping from visual images to gaits is established.The kinematic model and obstacle-crossing strategy are established through kinematic analysis and data fitting.The terrain passable domain delineation algorithm incorporating YOLACT++ is used to generate navigation paths in the passable domain based on the midpoint pixel sampling method.In order to validate the proposed method, a multi-terrain simulation scene and a real scene are built and experimented, and the results show that the closed-chained multi-legged robot is able to walk autonomously in unfamiliar environments and switch its gaits according to the terrain.

Key words: closed-chain multi-legged robot, image segmentation, obstacle surmounting strategy, motion planning

中图分类号: