• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (13): 153-162,171.doi: 10.3901/JME.2021.13.153

• 机器人及机构学 • 上一篇    下一篇

扫码分享

近似直驱双足机器人跳跃运动非线性优化及试验验证

单开正1,2, 于海涛1,2, 韩亮亮2, 王圣军1, 李君1, 高海波1, 邓宗全1   

  1. 1. 哈尔滨工业大学机器人技术与系统国家重点实验室 哈尔滨 150080;
    2. 中国航天科技集团有限公司空间结构与机构技术实验室 上海 201108
  • 收稿日期:2020-07-06 修回日期:2021-01-31 出版日期:2021-07-05 发布日期:2021-08-31
  • 通讯作者: 于海涛(通信作者),男,1984年出生,博士,讲师,硕士研究生导师。主要研究方向为机器人技术、宇航空间机构与控制。E-mail:yht@hit.edu.cn
  • 作者简介:单开正,男,1994年出生,博士研究生。主要研究方向为双足机器人机构设计及运动控制。E-mail:kaizhengshan@hit.edu.cn
  • 基金资助:
    中国航天科技集团有限公司空间结构与机构技术实验室开放课题基金(YY-F805202006022)资助项目

Nonlinear Optimization and Experimental Validation of a Quasi-direct-drive Bipedal Robot's Jumping Motion

SHAN Kaizheng1,2, YU Haitao1,2, HAN Liangliang2, WANG Shengjun1, LI Jun1, GAO Haibo1, DENG Zongquan1   

  1. 1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080;
    2. Space Structure and Mechanism Technology Laboratory, China Aerospace Science and Technology Group Co. Ltd, Shanghai 201108
  • Received:2020-07-06 Revised:2021-01-31 Online:2021-07-05 Published:2021-08-31

摘要: 跳跃是腿足式动物最常见的步态模式之一,通过快速有力的爆发性功率输出,动物可完成越障避敌等行为。然而,受制于执行器能力限制和高动态运动的规划控制难度,由腿足式机器人实现跳跃奔跑等运动极具挑战性。为此,设计一种基于共轴近似直驱结构方案的双足机器人样机,在三杆简化模型的基础上,确立支撑相和飞行相的约束条件,以跳跃高度最优为目标,将机器人系统的运动规划问题处理成有限维度的非线性优化问题,并采用变参数PID实现关节力矩跟踪控制。通过双足机器人跳跃试验,对运动规划算法的有效性进行验证。结果表明,双足机器人样机能完成离地高度约为0.34 m (相当于50%的腿长)的跳跃动作,研究成果可为未来高越障性足式机器人研究提供理论支撑和技术参考。

关键词: 双足机器人, 近似直驱, 运动规划, 非线性优化

Abstract: Jumping is one of the most common gait patterns for cursorial mammals. With rapid and impulsive output, animals can cross obstacles and escape from enemies. However, subject to the limitations of actuator capabilities and the difficulty of planning and controlling highly dynamic movements, it is extremely challenging for legged robots to achieve movements such as jumping and running. In view of this, a bipedal robot prototype is devised with the co-axial quasi-direct-drive structure. Based on the simplified three-bar model, the constraint conditions of stance phase and flight phase are confirmed. With the goal of optimal jumping height, the motion planning issue of the robot is transferred into a nonlinear optimization problem with finite dimensions, and the variable parameter PID is used for the joint torque tracking control. The effectiveness of the motion planning algorithm is verified on physical robot platform. The results show that the biped robot can achieve jumping with ground clearance of 0.34 m (equivalent to 50% of the leg length). The research results can provide theoretical support and technical reference for future research on legged robots with remarkable obstacle negotiation ability.

Key words: biped robot, quasi-direct-drive, motion planning, nonlinear optimization

中图分类号: