• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (24): 290-298.doi: 10.3901/JME.2023.24.290

• 运载工程 • 上一篇    下一篇

扫码分享

基于混合A星的停车场内巡航分层运动规划方法

赵锦涛, 李亮, 薛仲瑾, 张志煌   

  1. 清华大学汽车安全与节能国家重点实验室 北京 100084
  • 收稿日期:2023-06-05 修回日期:2023-10-25 出版日期:2023-12-20 发布日期:2024-03-05
  • 通讯作者: 胡楷雄(通信作者),男,1985年出生,博士,副教授。主要研究方向为智能制造、机器人智能化应用和材料的结构与力学性能等。E-mail:kaixiong.hu@whut.edu.cn
  • 作者简介:田林雳,女,1990年出生,博士,讲师。主要研究方向为汽车结构设计及智能制造。E-mail:tll@whut.edu.cn

Hierarchical Motion Planning Method Based on Hybrid A-star for Cruising in Parking Area

ZHAO Jintao, LI Liang, XUE Zhongjin, ZHANG Zhihuang   

  1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084
  • Received:2023-06-05 Revised:2023-10-25 Online:2023-12-20 Published:2024-03-05

摘要: 自动驾驶汽车作为智能交通系统的重要组成部分,越来越受到研究者的重视。自动代客泊车技术(Auto valet parking)是高级别自动驾驶不可缺少的部分。代客泊车应用于非结构化环境,这使得研究者需要设计有别于结构化场景的规划算法来应对非结构化环境的各种挑战,例如,道路线的缺失、周车预测的不确定性。考虑代客泊车的环境特点,提出基于改进混合A*算法和时间弹性带算法的分层运动规划方法。通过修改碰撞检测过程,使得混合A*算法可以实现交互行为。通过引入地图参考线代价,加快混合A*算法搜索效率。改进后的混合A*算法可以针对非结构化环境生成合理有效的初值轨迹。采用的时间弹性带算法执行效率高,有效解决了车辆运动学和障碍物约束问题,可以快速应对环境变化。在中国苏州的地下停车场开展实车试验。试验结果表明,提出的算法能够有效地解决常规场景下的车辆横向运动规划问题。

关键词: 自动代客泊车, 运动规划, 混合A*, 时间弹性带

Abstract: As an important part of the intelligent transportation system, autonomous vehicles have received more and more attention from researchers. Auto valet parking is an essential part of high-level autonomous driving. As valet parking is applied to unstructured environments, researchers need to design special planning algorithms to deal with the various challenges of unstructured scenarios such as the lack of road lines, and the uncertain forecasts of surroundings. Considering the environmental characteristics of valet parking, a hierarchical motion planning method based on an improved hybrid A-Star algorithm and a time elastic band algorithm is proposed. By modifying the collision detection process, the hybrid A-Star algorithm can achieve interactive behavior. By introducing the cost of the reference line, the search efficiency of the hybrid A-Star algorithm is improved. The improved hybrid A-Star algorithm can generate reasonable and effective initial trajectories for unstructured environments. The time-elastic-band algorithm has high execution efficiency, effectively solves the problem of vehicle kinematics and obstacle constraints, and can quickly respond to environmental changes. A real vehicle experiment is carried out in Suzhou, China. The results show that the proposed algorithm can effectively solve the problem of vehicle lateral motion planning in conventional scenarios.

Key words: auto valet parking, motion planning, hybrid A-star, timed-elastic-band

中图分类号: