机械工程学报 ›› 2024, Vol. 60 ›› Issue (17): 22-39.doi: 10.3901/JME.2024.17.022
• 特邀专栏:面向人民生命健康的机器人技术 • 上一篇 下一篇
马伟佳1, 朱小龙2, 刘青瑶3, 段星光2,3, 李长胜3
收稿日期:
2023-08-07
修回日期:
2024-03-06
发布日期:
2024-10-21
作者简介:
马伟佳,男,1981年出生,博士,副研究员。主要研究方向为机器人技术与系统。E-mail:maweijia@idpc.org.cn基金资助:
MA Weijia1, ZHU Xiaolong2, LIU Qingyao3, DUAN Xingguang2,3, LI Changsheng3
Received:
2023-08-07
Revised:
2024-03-06
Published:
2024-10-21
摘要: 机器人辅助手术旨在通过机器人系统协助医生实施外科手术,近年来受到越来越多的关注。人工智能的快速发展加快了机器人辅助手术向微创、智能和自主化的方向发展。综述了人工智能在机器人辅助手术中的应用,从医学图像处理、手术规划与导航、手术机器人运动控制与决策三方面进行总结。借助人工智能技术,医学图像处理的应用使医生更准确地获取具有更高清晰度和更直观立体的影像数据,对病灶和组织进行准确的分割和对齐,以及自动识别和分析医学图像中的病变或异常区域。人工智能在手术规划与导航方面的应用使外科医生可以更准确地规划手术方案,并提供精确的导航引导。通过结合患者的个性化数据和医生丰富的手术经验,人工智能可以帮助医生预测手术风险,并为手术过程中的精确定位和灵巧操作提供实时指导。手术机器人运动控制与决策方面的应用使机器人在手术中能够更有效地执行任务,并做出智能化决策。人工智能算法可以实时分析手术场景的复杂信息,辅助机器人进行精细的运动控制。分析了人工智能在机器人辅助手术的发展机遇和挑战,以对未来人工智能对机器人辅助手术研究的指导和启发。
中图分类号:
马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39.
MA Weijia, ZHU Xiaolong, LIU Qingyao, DUAN Xingguang, LI Changsheng. Artificial Intelligence in Robot-assisted Surgery[J]. Journal of Mechanical Engineering, 2024, 60(17): 22-39.
[1] MCCARTHY J. What is artificial intelligence[M]. Stanford University, 2007. [2] BRYNJOLFSSON E, MCAFEE A. Artificial intelligence, for real[J]. Harvard Business Review, 2017, 1:1-31. [3] WANG J, WANG W, HOU Z G. Toward improving engagement in neural rehabilitation:attention enhancement based on brain-computer interface and audiovisual feedback[J]. IEEE Transactions on Cognitive and Developmental Systems, 2019, 12(4):787-796. [4] SAHU C K, YOUNG C, RAI R. Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications:a review[J]. International Journal of Production Research, 2021, 59(16):4903-4959. [5] LUCK M, AYLETT R. Applying artificial intelligence to virtual reality:intelligent virtual environments[J]. Applied artificial Intelligence, 2000, 14(1):3-32. [6] MURPHY R R. Introduction to ai robotics[M]. MIT Press, 2019. [7] 孙振, 王田苗, 王君臣, 等. 经尿道手术机器人研究进展及关键技术分析[J]. 机器人, 2020, 42(6):716-733. SUN Zhen, WANG Tianmiao, WANG Junchen, et al. Advances and key techniques of transurethral surgical robot[J]. Robot, 2020, 42(6):716-733. [8] HAMET P, TREMBLAY J. Artificial intelligence in medicine[J]. Metabolism, 2017, 69:S36-S40. [9] RAMESH A, KAMBHAMPATI C, MONSON J R, et al. Artificial intelligence in medicine[J]. Annals of the Royal College of Surgeons of England, 2004, 86(5):334. [10] YANG G Z, CAMBIAS J, CLEARY K, et al. Medical robotics-regulatory, ethical, and legal considerations for increasing levels of autonomy[J]. American Association for the Advancement of Science, 2017(1):eaam8638(2017). [11] BARBASH G I. New technology and health care costs-the case of robot-assisted surgery[J]. The New England journal of Medicine, 2010, 363(8):701. [12] ZHOU X Y, GUO Y, SHEN M, et al. Application of artificial intelligence in surgery[J]. Frontiers of Medicine, 2020, 14:417-430. [13] HU Q, YANG Y, CHENG J, et al. Adversarial binary mutual learning for semi-supervised deep hashing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(8):4110-4124. [14] FAN C C, YANG H, HOU Z G, et al. Bilinear neural network with 3-d attention for brain decoding of motor imagery movements from the human eeg[J]. Cognitive Neurodynamics, 2021, 15:181-189. [15] LEPCHA D C, GOYAL B, DOGRA A, et al. Image super-resolution:a comprehensive review, recent trends, challenges and applications[J]. Information Fusion, 2023, 91:230-260. [16] KOETZIER L R, MASTRODICASA D, SZCZYKUTOWICZ T P, et al. Deep learning image reconstruction for CT:technical principles and clinical prospects[J]. Radiology, 2023, 306(3):e221257. [17] LEE H, LEE J, KIM H, et al. Deep-neural-network-based sinogram synthesis for sparse-view ct image reconstruction[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 3(2):109-119. [18] LI Q, LI R, WANG T, et al. A cascade-based dual-domain data correction network for sparse view CT image reconstruction[J]. Computers in Biology and Medicine, 2023, 165:107345. [19] VISHNEVSKIY V, RAU R, GOKSEL O. Deep variational networks with exponential weighting for learning computed tomography[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019:22nd International Conference, Shenzhen:Springer, 2019:310-318. [20] FU L, DE MAN B. A hierarchical approach to deep learning and its application to tomographic reconstr uction[C]//15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Philadelphia:SPIE, 2019:1107202. [21] GASSENMAIER S, WARM V, NICKEL D, et al. Thin-slice prostate MRI enabled by deep learning image reconstruction[J]. Cancers, 2023, 15(3):578. [22] MARDANI M, GONG E, CHENG J Y, et al. Deep generative adversarial neural networks for compressive sensing MRI[J]. IEEE Transactions on Medical Imaging, 2018, 38(1):167-179. [23] SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for mr image reconstruction[C]//Information Processing in Medical Imaging:25th International Conference, Boon:Springer, 2017:647-658. [24] READER A J, CORDA G, MEHRANIAN A, et al. Deep learning for pet image reconstruction[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 5(1):1-25. [25] HASHIMOTO F, OTE K, ONISHI Y. PET image reconstruction incorporating deep image prior and a forward projection model[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6(8):841-846. [26] KHAIRALSEED M, HOYT K. High-resolution ultrasound characterization of local scattering in cancer tissue[J]. Ultrasound in Medicine & Biology, 2023, 49(4):951-960. [27] QIU D, CHENG Y, WANG X. Medical image super-resolution reconstruction algorithms based on deep learning:a survey[J]. Computer Methods and Programs in Biomedicine, 2023, 238:107590. [28] DI IANNI T, AIRAN R D. Deep-fus:a deep learning platform for functional ultrasound imaging of the brain using sparse data[J]. IEEE Transactions on Medical Imaging, 2022, 41(7):1813-1825. [29] KOULOUNTZIOS P, RYMARCZYK T, SOLEIMANI M. A 4-d ultrasound tomography for industrial process reactors investigation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:1-14. [30] PRASAD S, ALMEKKAWY M. Dl-uct:a deep learning framework for ultrasound computed tomography[C]//2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata:IEEE, 2022:1-5. [31] LEPCHA D C, GOYAL B, DOGRA A, et al. Image super-resolution:a comprehensive review, recent trends, challenges and applications[J]. Information Fusion, 2023, 91:230-260. [32] PHAM C H, DUCOURNAU A, FABLET R, et al. Brain mri super-resolution using deep 3d convolutional networks[C]//2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne:IEEE, 2017:197-200. [33] MAHAPATRA D, BOZORGTABAR B, GARNAVI R. Image super-resolution using progressive generative adversarial networks for medical image analysis[J]. Computerized Medical Imaging and Graphics, 2019, 71:30-39. [34] SONG X, TANG H, YANG C, et al. Deformable transformer for endoscopic video super-resolution[J]. Biomedical Signal Processing and Control, 2022, 77:103827. [35] LI X, ZHANG J, XUE Y, et al. Classification of hops image based on resnet-convlstm and research of intelligent liquor picking system[J]. Measurement, 2022, 194:110955. [36] YANG X, SONG Z, KING I, et al. A survey on deep semi-supervised learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022. [37] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference, Munich:Springer, 2015:234-241. [38] SCHLEMPER J, OKTAY O, SCHAAP M, et al. Attention gated networks:learning to leverage salient regions in medical images[J]. Medical image Analysis, 2019, 53:197-207. [39] DOLZ J, GOPINATH K, YUAN J, et al. HyperDense-net:a hyper-densely connected cnn for multi-modal image segmentation[J]. IEEE transactions on medical Imaging, 2018, 38(5):1116-1126. [40] TANG F, LIANG S, ZHONG T, et al. Postoperative glioma segmentation in ct image using deep feature fusion model guided by multi-sequence MRIs[J]. European Radiology, 2020, 30:823-832. [41] SU B, ZHANG Q, GONG Y, et al. Deep learning-based classification and segmentation for scalpels[J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 18(5):855-864. [42] OUYANG X, XUE Z, ZHAN Y, et al. Weakly supervised segmentation framework with uncertainty:a study on pneumothorax segmentation in chest x-ray[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019:22nd International Conference, Shenzhen:Springer, 2019:613-621. [43] WANG S, HE K, NIE D, et al. CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation[J]. Medical Image Analysis, 2019, 54:168-178. [44] CARNEIRO G, NASCIMENTO J, BRADLEY A P. Unregistered multiview mammogram analysis with pre-trained deep learning models[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference, Munich:Springer, 2015:652-660. [45] KULKARNI T, GUPTA A, IONESCU C, et al. Unsupervised learning of object keypoints for perception and control[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver:ACM, 2019:10724-10734. [46] CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[J]. Advances in neural information processing Systems, 2020, 33:9912-9924. [47] AMBELLAN F, TACK A, EHLKE M, et al. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks:data from the osteoarthritis initiative[J]. Medical image Analysis, 2019, 52:109-118. [48] FANG L, ZHANG L, NIE D, et al. Automatic brain labeling via multi-atlas guided fully convolutional networks[J]. Medical image Analysis, 2019, 51:157-168. [49] KERVADEC H, DOLZ J, TANG M, et al. Constrained-cnn losses for weakly supervised segmentation[J]. Medical image Analysis, 2019, 54:88-99. [50] MAN Y, HUANG Y, FENG J, et al. Deep q learning driven ct pancreas segmentation with geometry-aware u-net[J]. IEEE Transactions on Medical Imaging, 2019, 38(8):1971-1980. [51] FU Y, LEI Y, WANG T, et al. Deep learning in medical image registration:a review[J]. Physics in Medicine & Biology, 2020, 65(20):20TR01. [52] HASKINS G, KRUGER U, YAN P. Deep learning in medical image registration:a survey[J]. Machine Vision and Applications, 2020, 31:1-18. [53] EPPENHOF K A, LAFARGE M W, VETA M, et al. Progressively trained convolutional neural networks for deformable image registration[J]. IEEE Transactions on Medical Imaging, 2019, 39(5):1594-1604. [54] CAO X, YANG J, ZHANG J, et al. Deformable image registration using a cue-aware deep regression network[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(9):1900-1911. [55] HU Y, MODAT M, GIBSON E, et al. Weakly-supervised convolutional neural networks for multimodal image registration[J]. Medical Image Analysis, 2018, 49:1-13. [56] DALCA A V, BALAKRISHNAN G, GUTTAG J, et al. Unsupervised learning for fast probabilistic diffeomorphic registration[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2018:21st International Conference, Granada:Springer, 2018:729-738. [57] SHEN Z, VIALARD F X, NIETHAMMER M. Region-specific diffeomorphic metric mapping[J]. Advances in Neural Information Processing Systems, 2019, 32:1. [58] FRANCHI G, FEHRI A, YAO A. Deep morphological networks[J]. Pattern Recognition, 2020, 102:107246. [59] BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. Voxelmorph:a learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019, 38(8):1788-1800. [60] DE VOS B D, BERENDSEN F F, VIERGEVER M A, et al. A deep learning framework for unsupervised affine and deformable image registration[J]. Medical Image Analysis, 2019, 52:128-143. [61] Data Modeling and Analysis Competition Platform, Google LLC[EB].[2010-04-08]. https://www.kaggle.com/datasets/. [62] XIE H, YANG D, SUN N, et al. Automated pulmonary nodule detection in ct images using deep convolutional neural networks[J]. Pattern Recognition, 2019, 85:109-119. [63] KHOSRAVAN N, BAGCI U. S4ND:single-shot single-scale lung nodule detection[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2018:21st International Conference, Granada:Springer, 2018:794-802. [64] AKSELROD-BALLIN A, KARLINSKY L, ALPERT S, et al. A region based convolutional network for tumor detection and classification in breast mammography[C]//Deep Learning and Data Labeling for Medical Applications:First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Athens:Springer, 2016:197-205. [65] XIAO L, ZHU C, LIU J, et al. Learning from suspected target:bootstrapping performance for breast cancer detection in mammography[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019:22nd International Conference, Shenzhen:Springer, 2019:468-476. [66] MAICAS G, CARNEIRO G, BRADLEY A P, et al. Deep reinforcement learning for active breast lesion detection from dce-mri[C]//Medical Image Computing and Computer Assisted Intervention- MICCAI 2017:20th International Conference, Quebec:Springer, 2017:665-673. [67] YAN K, WANG X, LU L, et al. DeepLesion:automated mining of large-scale lesion annotations and universal lesion detection with deep learning[J]. Journal of medical Imaging, 2018, 5(3):036501-036501. [68] ZLOCHA M, DOU Q, GLOCKER B. Improving retinanet for ct lesion detection with dense masks from weak recist labels[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019:22nd International Conference, Shenzhen:Springer, 2019:402-410. [69] SU B, WANG Z, GONG Y, et al. Anal center detection and classification of perianal healthy condition[J]. Biomedical Signal Processing and Control, 2022, 77:103759. [70] MOUNTNEY P, YANG G Z. Soft tissue tracking for minimally invasive surgery:learning local deformation online[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008:11th International Conference, New York:Springer, 2008:364-372. [71] WANG R, ZHANG M, MENG X, et al. 3-d tracking for augmented reality using combined region and dense cues in endoscopic surgery[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 22(5):1540-1551. [72] SAEIDI H, OPFERMANN J D, KAM M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis[J]. Science Robotics, 2022, 7(62):eabj2908. [73] LI C, GU X, XIAO X, et al. Cadaveric feasibility study of a teleoperated parallel continuum robot with variable stiffness for transoral surgery[J]. Medical & Biological Engineering & Computing, 2020, 58:2063-2069. [74] LI C, GU X, XIAO X, et al. Compliant and flexible robotic system with parallel continuum mechanism for transoral surgery:a pilot cadaveric study[J]. Robotics, 2022, 11(6):135. [75] LI C, GU X, XIAO X, et al. Deployable parallelogram mechanism and constrained bendable segment for flexible robot toward transoral procedures[J]. IEEE Transactions on Medical Robotics and Bionics, 2023. [76] LU S, LIU S, HOU P, et al. Soft tissue feature tracking based on deepmatching network[J]. CMES-Computer Modeling in Engineering & Sciences, 2023, 136(1):1. [77] SCHOOB A, KUNDRAT D, KAHRS L A, et al. Stereo vision-based tracking of soft tissue motion with application to online ablation control in laser microsurgery[J]. Medical image Analysis, 2017, 40:80-95. [78] HAN J, DING Q, XIONG A, et al. A state-space emg model for the estimation of continuous joint movements[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7):4267-4275. [79] ZHAO X, CHU Y, HAN J, et al. SSVEP-based brain-computer interface controlled functional electrical stimulation system for upper extremity rehabilitation[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(7):947-956. [80] CHEN Z, ZHAO Z, CHENG X. Surgical instruments tracking based on deep learning with lines detection and spatio-temporal context[C]//2017 Chinese Automation Congress (CAC), Jinan:IEEE, 2017:2711-2714. [81] TWINANDA A P, SHEHATA S, MUTTER D, et al. Endonet:a deep architecture for recognition tasks on laparoscopic videos[J]. IEEE Transactions on Medical Imaging, 2016, 36(1):86-97. [82] SARIKAYA D, CORSO J J, GURU K A. Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection[J]. IEEE Transactions on Medical Imaging, 2017, 36(7):1542-1549. [83] KURMANN T, MARQUEZ NEILA P, DU X, et al. Simultaneous recognition and pose estimation of instruments in minimally invasive surgery[C]//Medical Image Computing and Computer-Assisted Intervention- MICCAI 2017:20th International Conference, Quebec:Springer, 2017:505-513. [84] NWOYE C I, MUTTER D, MARESCAUX J, et al. Weakly supervised convolutional lstm approach for tool tracking in laparoscopic videos[J]. International Journal of Computer Assisted Radiology and Surgery, 2019, 14:1059-1067. [85] 孙立宁, 张剑, 杜志江, 等. 一种骨外科手术机器人的图像导航方法[J]. 自动化学报, 2006, 32(2):279-285. SUN Lining, ZHANG Jian, DU Zhijiang, et al. An image navigation way for orthopaedic surgery robot[J]. Acta Automatica Sinica, 2006, 32(2):279-285. [86] HAN J, YIN P, HE Y, et al. Enhanced icp for the registration of large-scale 3D environment models:an experimental study[J]. Sensors, 2016, 16(2):228. [87] QIN Y, GENG P, YOU Y, et al. Collaborative preoperative planning for operation-navigation dual-robot orthopedic surgery system[J]. IEEE Transactions on Automation Science and Engineering, 2023. [88] LI C, GU X, XIAO X, et al. Flexible robot with variable stiffness in transoral surgery[J]. IEEE/ASME Transactions on Mechatronics, 2019, 25(1):1-10. [89] LI C, GU X, XIAO X, et al. Transcend anthropomorphic robotic grasping with modular antagonistic mechanisms and adhesive soft modulations[J]. IEEE Robotics and Automation Letters, 2019, 4(3):2463-2470. [90] TIAN H, DUAN X, HAN Z, et al. Virtual-fixtures based shared control method for curve-cutting with a reciprocating saw in robot-assisted osteotomy[J]. IEEE Transactions on Automation Science and Engineering, 2023. [91] MOUNTNEY P, STOYANOV D, DAVISON A, et al. Simultaneous stereoscope localization and soft-tissue mapping for minimal invasive surgery[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006:9th International Conference, Copenhagen:Springer, 2006:347-354. [92] GRASA O G, BERNAL E, CASADO S, et al. Visual slam for handheld monocular endoscope[J]. IEEE Transactions on Medical Imaging, 2013, 33(1):135-146. [93] TURAN M, ALMALIOGLU Y, ARAUJO H, et al. A non-rigid map fusion-based direct slam method for endoscopic capsule robots[J]. International journal of intelligent robotics and Applications, 2017, 1:399-409. [94] LI C, GU X, REN H. A cable-driven flexible robotic grasper with lego-like modular and reconfigurable joints[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6):2757-2767. [95] LI C, GU X, XIAO X, et al. A flexible transoral robot towards COVID-19 swab sampling[J]. Frontiers in Robotics and AI, 2021, 8:612167. [96] LI C, YAN Y, XIAO X, et al. A miniature manipulator with variable stiffness towards minimally invasive transluminal endoscopic surgery[J]. IEEE Robotics and Automation Letters, 2021, 6(3):5541-5548. [97] LI C, GU X, XIAO X, et al. A robotic system with multichannel flexible parallel manipulators for single port access surgery[J]. IEEE Transactions on Industrial Informatics, 2018, 15(3):1678-1687. [98] NOWINSKI W L, YANG G L, YEO T T. Computer- aided stereotactic functional neurosurgery enhanced by the use of the multiple brain atlas database[J]. IEEE Transactions on Medical Imaging, 2000, 19(1):62-69. [99] WIMMER W, VENAIL F, WILLIAMSON T, et al. Semiautomatic cochleostomy target and insertion trajectory planning for minimally invasive cochlear implantation[J]. BioMed Research International, 2014, 2014:1-8. [100] KLEIN S, WHYNE C M, RUSH R, et al. CT-based patient-specific simulation software for pedicle screw insertion[J]. Clinical Spine Surgery, 2009, 22(7):502-506. [101] HERGHELEGIU P C, MANTA V, PERIN R, et al. Biopsy planner-visual analysis for needle pathway planning in deep seated brain tumor biopsy[C]//Computer graphics Forum, Oxford, :Wiley Online Library, 2012:1085-1094. [102] 段星光, 温浩, 何睿, 等. 胸腹腔经皮穿刺机器人研究进展及关键技术分析[J]. 机器人, 2021, 43(5):567-584. DUAN Xingguang, WEN Hao, HE Rui, et al. Advances and key techniques of percutaneous puncture robots for thorax and abdomen[J]. Robot, 2021, 43(5):567-584. [103] ZHAO Y, WANG Y, ZHANG J, et al. Surgical gan:towards real-time path planning for passive flexible tools in endovascular surgeries[J]. Neurocomputing, 2022, 500:567-580. [104] WANG C, ZHAO T, ZHANG J, et al. A novel motion planning algorithm for a three dof foldable parallel compensation platform based on prediction and b-spline[J]. Ocean Engineering, 2022, 266:112876. [105] LI K, ZHANG J, LIU X, et al. Estimation of continuous elbow joint movement based on human physiological structure[J]. Biomedical engineering Online, 2019, 18:1-15. [106] NAVKAR N V, TSEKOS N V, STAFFORD J R, et al. Visualization and planning of neurosurgical interventions with straight access[C]//Information Processing in Computer-Assisted Interventions:First International Conference, Geneva:Springer, 2010:1-11. [107] SOLITRO G F, AMIROUCHE F. Innovative approach in the development of computer assisted algorithm for spine pedicle screw placement[J]. Medical Engineering & Physics, 2016, 38(4):354-365. [108] LIU D, LIU H, LEWIS F L, et al. Robust time-varying formation control for tail-sitters in flight mode transitions[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 51(7):4102-4111. [109] FICUCIELLO F, VILLANI L, SICILIANO B. Impedance control of redundant manipulators for safe human-robot collaboration[J]. Acta Polytechnica Hungarica, 2016, 13(1):223-238. [110] FONG J, TAVAKOLI M. Kinesthetic teaching of a therapist's behavior to a rehabilitation robot[C]//2018 International Symposium on Medical Robotics (ISMR). IEEE, 2018:1-6. [111] SHARKAWY A N, KOUSTOURNPARDIS P N, ASPRAGATHOS N. Variable admittance control for human-robot collaboration based on online neural network training[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid:IEEE, 2018:1334-1339. [112] MODARES H, RANATUNGA I, LEWIS F L, et al. Optimized assistive human-robot interaction using reinforcement learning[J]. IEEE transactions on Cybernetics, 2015, 46(3):655-667. [113] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference, Munich:Springer, 2015:234-241. [114] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing Systems, 2017, 30. [115] Applied research report, Cloudera, Inc[EB].[2019-01- 27]. https://meta-learning.fastforwardlabs.com/. [116] WANG X, YU N, HAN J, et al. Modeling and adaptive control for tendon sheath artificial muscle actuated bending-tip systems with unknown parameters and input hysteresis:an experimental research[J]. IEEE Transactions on Industrial Electronics, 2022, 70(10):10588-10597. [117] LI K, ZHANG J, WANG L, et al. A review of the key technologies for semg-based human-robot interaction systems[J]. Biomedical Signal Processing and Control, 2020, 62:102074. [118] LI K, LIU X, ZHANG J, et al. Continuous motion and time-varying stiffness estimation of the human elbow joint based on semg[J]. Journal of Mechanics in Medicine and Biology, 2019, 19(5):1950040. [119] PARK S, HOWE R D, TORCHIANA D F. Virtual fixtures for robotic cardiac surgery[C]//International conference on medical image computing and computer-assisted intervention. Berlin:Springer, 2001:1419-1420. [120] DUAN X, TIAN H, LI C, et al. Virtual-fixture based drilling control for robot-assisted craniotomy:learning from demonstration[J]. IEEE Robotics and Automation Letters, 2021, 6(2):2327-2334. [121] 尚祖峰, 马家耀, 王树新. 面向微创手术器械臂的可变刚度机理综述[J]. 机械工程学报, 2022, 58(21):1-15. SHANG Zufeng, MA Jiayao, WANG Shuxin. Review of variable stiffness mechanisms in minimally invasive surgical manipulators[J]. Journal of Mechanical Engineering, 2022, 58(21):1-15. [122] LI X, TIONG A M H, CAO L, et al. Deep learning for haptic feedback of flexible endoscopic robot without prior knowledge on sheath configuration[J]. International Journal of Mechanical Sciences, 2019, 163:105129. [123] LEE M A, ZHU Y, ZACHARES P, et al. Making sense of vision and touch:learning multimodal representations for contact-rich tasks[J]. IEEE Transactions on Robotics, 2020, 36(3):582-596. [124] GUO Y, PAN B, FU Y, et al. ACAM-foc:a deep neural network augmented from cam-foc to measure the grip force of mass-produced elongated surgical instruments[J]. IEEE Robotics and Automation Letters, 2023(1):1. [125] GUO Y, PAN B, FU Y, et al. CAM-foc:a high accuracy lightweight deep neural network for grip force measurement of elongated surgical instrument[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-12. [126] AVILES A I, ALSALEH S M, MONTSENY E, et al. A deep-neuro-fuzzy approach for estimating the interaction forces in robotic surgery[C]//2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver:IEEE, 2016:1113-1119. [127] MARBAN A, SRINIVASAN V, SAMEK W, et al. Estimation of interaction forces in robotic surgery using a semi-supervised deep neural network model[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid:IEEE, 2018:761-768. [128] HUANG J Q, LEWIS F L, LIU K. A neural net predictive control for telerobots with time delay[J]. Journal of Intelligent and Robotic Systems, 2000, 29:1-25. [129] BAO J, WANG H, LIU P X. Finite-time synchronization control for bilateral teleoperation systems with asymmetric time-varying delay and input dead zone[J]. IEEE/ASME Transactions on Mechatronics, 2020, 26(3):1570-1580. [130] GONZALEZ G, AGARWAL M, BALAKUNTALA M V, et al. Deserts:delay-tolerant semi-autonomous robot teleoperation for surgery[C]//2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an:IEEE, 2021:12693-12700. [131] BACHA S C, BAI W, WANG Z, et al. Deep reinforcement learning-based control framework for multilateral telesurgery[J]. IEEE Transactions on Medical Robotics and Bionics, 2022, 4(2):352-355. [132] SHU X, CHEN Q, XIE L. A novel robotic system for flexible ureteroscopy[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 17(1):1-11. [133] THANANJEYAN B, GARG A, KRISHNAN S, et al. Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning[C]//2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore:IEEE, 2017:2371-2378. [134] SEITA D, KRISHNAN S, FOX R, et al. Fast and reliable autonomous surgical debridement with cable-driven robots using a two-phase calibration procedure[C]//2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane:IEEE, 2018:6651-6658. [135] ATTANASIO A, SCAGLIONI B, LEONETTI M, et al. Autonomous tissue retraction in robotic assisted minimally invasive surgery-a feasibility study[J]. IEEE Robotics and Automation Letters, 2020, 5(4):6528-6535. [136] OPFERMANN J D, LEONARD S, DECKER R S, et al. Semi-autonomous electrosurgery for tumor resection using a multi-degree of freedom electrosurgical tool and visual servoing[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)., Vancouver:IEEE, 2017:3653-3660. [137] NICHOLS K A, OKAMURA A M. Autonomous robotic palpation:machine learning techniques to identify hard inclusions in soft tissues[C]//2013 IEEE International Conference on Robotics and Automation, Karlsruhe:IEEE, 2013:4384-4389. [138] MCKINLEY S, GARG A, SEN S, et al. A single-use haptic palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery[C]//2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg:IEEE, 2015:1151-1158. [139] MCKINLEY S, GARG A, SEN S, et al. An interchangeable surgical instrument system with application to supervised automation of multilateral tumor resection[C]//2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth:IEEE, 2016:821-826. [140] OSA T, HARADA K, SUGITA N, et al. Trajectory planning under different initial conditions for surgical task automation by learning from demonstration[C]//2014 IEEE International Conference on Robotics and Automation (ICRA), HongKong:IEEE, 2014:6507-6513. [141] MIKADA T, KANNO T, KAWASE T, et al. Suturing support by human cooperative robot control using deep learning[J]. IEEE Access, 2020, 8:167739-167746. [142] TANWANI A K, SERMANET P, YAN A, et al. Motion2vec:semi-supervised representation learning from surgical videos[C]//2020 IEEE International Conference on Robotics and Automation (ICRA), Paris:IEEE, 2020:2174-2181. [143] PEDRAM S A, SHIN C, FERGUSON P W, et al. Autonomous suturing framework and quantification using a cable-driven surgical robot[J]. IEEE Transactions on Robotics, 2020, 37(2):404-417. [144] SHADEMAN A, DECKER R S, OPFERMANN J, et al. Plenoptic cameras in surgical robotics:calibration, registration, and evaluation[C]//2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm:IEEE, 2016:708-714. [145] SAEIDI H, LE H N, OPFERMANN J D, et al. Autonomous laparoscopic robotic suturing with a novel actuated suturing tool and 3d endoscope[C]//2019 International Conference on Robotics and Automation (ICRA), Montreal:IEEE, 2019:1541-1547. [146] FAGOGENIS G, MENCATTELLI M, MACHAIDZE Z, et al. Autonomous robotic intracardiac catheter navigation using haptic vision[J]. Science Robotics, 2019, 4(29):eaaw1977. [147] PATEL N A, VAN KATWIJK T, LI G, et al. Closed-loop asymmetric-tip needle steering under continuous intraoperative MRI guidance[C]//201537th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan:IEEE, 2015:4869-4874. [148] MOREIRA P, BOSKMA K J, MISRA S. Towards mri-guided flexible needle steering using fiber bragg grating-based tip tracking[C]//2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore:IEEE, 2017:4849-4854. [149] JIN D, ZHANG L. Embodied intelligence weaves a better future[J]. Nature Machine Intelligence, 2020, 2(11):663-664. [150] MENGALDO G, RENDA F, BRUNTON S L, et al. A concise guide to modelling the physics of embodied intelligence in soft robotics[J]. Nature Reviews Physics, 2022, 4(9):595-610 |
[1] | 严如强, 许文纲, 王志颖, 朱启翔, 周峥, 赵志斌, 孙闯, 王诗彬, 陈雪峰, 张军辉, 徐兵. 航空发动机燃油控制系统故障诊断技术研究进展与挑战[J]. 机械工程学报, 2024, 60(4): 3-31. |
[2] | 戴国洪, 张道涵, 彭思敏, 苗一凡, 卓悦, 杨瑞鑫, 于全庆. 人工智能在动力电池健康状态预估中的研究综述[J]. 机械工程学报, 2024, 60(4): 391-408. |
[3] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
[4] | 温楷儒, 陈祝云, 黄如意, 李东鹏, 李巍华. 基于可解释时空图卷积网络的多传感数据融合诊断方法[J]. 机械工程学报, 2024, 60(12): 158-167. |
[5] | 陶飞, 张辰源, 刘蔚然, 张贺, 马昕, 高鹏飞, 张建康. 数字工程及十个领域应用展望[J]. 机械工程学报, 2023, 59(13): 193-215. |
[6] | 汪俊亮, 高鹏捷, 张洁, 王力翚. 制造大数据分析综述:内涵、方法、应用和趋势[J]. 机械工程学报, 2023, 59(12): 1-16. |
[7] | 罗仕鉴, 龚何波, 林伟. 智能产品交互设计研究现状与进展[J]. 机械工程学报, 2023, 59(11): 1-15. |
[8] | 陶永, 刘海涛, 王田苗, 韩栋明, 赵罡. 我国服务机器人技术研究进展与产业化发展趋势[J]. 机械工程学报, 2022, 58(18): 56-74. |
[9] | 孟博洋, 李茂月, 刘献礼, WANG Lihui, LIANG S Y, 王志学. 机床智能控制系统体系架构及关键技术研究进展[J]. 机械工程学报, 2021, 57(9): 147-166. |
[10] | 尹源, 黄伟峰, 刘向锋, 刘莹, 王玉明, 李鲲. 机械密封智能化的技术基础和发展趋势[J]. 机械工程学报, 2021, 57(3): 116-128. |
[11] | 高金吉. 人工自愈概论[J]. 机械工程学报, 2021, 57(2): 1-10. |
[12] | 顾新建, 马步青, 顾复, 滕宇东. 产品模块化中的若干智能方法[J]. 机械工程学报, 2021, 57(17): 1-9. |
[13] | 向家伟. 数值模型驱动的传动系统故障个性化诊断原理[J]. 机械工程学报, 2021, 57(15): 116-128. |
[14] | 高金吉. 人工自愈与机器自愈调控系统[J]. 机械工程学报, 2018, 54(8): 83-94. |
[15] | 刘献礼, 刘强, 岳彩旭, 王力翚, LIANG S Y, 计伟, 高海宁. 切削过程中的智能技术[J]. 机械工程学报, 2018, 54(16): 45-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||