机械工程学报 ›› 2024, Vol. 60 ›› Issue (17): 1-21.doi: 10.3901/JME.2024.17.001
• 特邀专栏:面向人民生命健康的机器人技术 • 上一篇 下一篇
秦岩丁1,2, 蔡卓丛1,2, 申亚京3, 韩建达1,2
收稿日期:
2024-01-30
修回日期:
2024-04-25
发布日期:
2024-10-21
作者简介:
秦岩丁,男,1983年出生,博士,教授,博士研究生导师。主要研究方向为医疗与辅助机器人,微纳操作机器人,磁控式机器人。E-mail:qinyd@nankai.edu.cn基金资助:
QIN Yanding1,2, CAI Zhuocong1,2, SHEN Yajing3, HAN Jianda1,2
Received:
2024-01-30
Revised:
2024-04-25
Published:
2024-10-21
摘要: 磁控式小型化医疗机器人能够被外部磁场隔空控制,在人体狭窄腔道内主动运动,检查并治疗人体深层的病变区域,在临床医疗领域具有巨大的潜力。根据尺度不同,磁控式小型化医疗机器人可分为厘米毫米尺度的胶囊机器人、毫米微米尺度的连续体机器人、微米纳米尺度的微型机器人。系统总结各自磁控原理、结构设计和潜在医疗应用,并综述最新研究进展。最后,展望磁控式小型化医疗机器人的未来研究方向,包括机器人材料的生物相容性,执行医疗任务的视觉反馈,多种医疗功能集成的小型化,运动控制的稳定性和鲁棒性。
中图分类号:
秦岩丁, 蔡卓丛, 申亚京, 韩建达. 磁控式小型化医疗机器人研究综述与展望[J]. 机械工程学报, 2024, 60(17): 1-21.
QIN Yanding, CAI Zhuocong, SHEN Yajing, HAN Jianda. Review and Prospect on the Magnetic Actuation Miniaturized Medical Robots[J]. Journal of Mechanical Engineering, 2024, 60(17): 1-21.
[1] IDDAN G, MERON G, GLUKHOVSKY A, et al. Wireless capsule endoscopy[J]. Nature, 2000, 405(6785):417-417. [2] LUO M, FENG Y, WANG T, et al. Micro-/nanorobots at work in active drug delivery[J]. Advanced Functional Materials, 2018, 28(25):1706100. [3] XU T, ZHANG J, SALEHIZADEH M, et al. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions[J]. Science Robotics, 2019, 4(29):eaav4494. [4] ZE Q, WU S, NISHIKAWA J, et al. Soft robotic origami crawler[J]. Science Advances, 2022, 8(13):eabm7834. [5] LI J, LI X, LUO T, et al. Development of a magnetic microrobot for carrying and delivering targeted cells[J]. Science Robotics, 2018, 3(19):eaat8829. [6] YANG L, ZHANG T, HUANG H, et al. An on-wall-rotating strategy for effective upstream motion of untethered millirobot:Principle, design, and demonstration[J]. IEEE Transactions on Robotics, 2023, 39(3):2419-2428. [7] CEYLAN H, GILTINAN J, KOZIELSKI K, et al. Mobile microrobots for bioengineering applications[J]. Lab on a Chip, 2017, 17(10):1705-1724. [8] RYAN P, DILLER E. Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets[J]. IEEE Transactions on Robotics, 2017, 33(6):1398-1409. [9] 倪自强, 王田苗, 刘达. 医疗机器人技术发展综述[J]. 机械工程学报, 2015, 51(13):45-52. NI Ziqiang, WANG Tianmiao, LIU Da. Survey on medical robotics[J]. Journal of Mechanical Engineering, 2015, 51(13):45-52. [10] GO G, YOO A, NGUYEN K T, et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer[J]. Science Advances, 2022, 8(46):eabq8545. [11] PURCELL E. Life at low reynolds number[J]. American Journal of Physics, 1977, 45(1):3-11. [12] AZMI H, SCHULDER M. Stereotactic accuracy of a 3-tesla magnetic resonance unit[J]. Stereotactic and Functional Neurosurgery, 2003, 80(1-4):140-145. [13] KIM Y, ZHAO X. Magnetic soft materials and robots[J]. Chemical Reviews, 2022, 122(5):5317-5364. [14] BARBOT A, TAN H, POWER M, et al. Floating magnetic microrobots for fiber functionalization[J]. Science Robotics, 2019, 4(34):eaax8336. [15] YU J, YANG L, ZHANG L. Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm[J]. International Journal of Robotics Research, 2018, 37(8):912-930. [16] 金东东, 俞江帆, 黄天云, 等. 磁性微纳米尺度游动机器人:现状与应用前景[J]. 科学通报, 2017, 62(Z1):136-151. JIN Dongdong, YU Jiangfan, HUANG Tianyun, et al. Magnetic micro-/nanoscale swimmers:Current status and potential applications[J]. Chinese Science Bulletin, 2017, 62(Z1):136-151. [17] LIANG X, MOU F, HUANG Z, et al. Hierarchical microswarms with leader-follower-like structures:Electrohydrodynamic self-organization and multimode collective photoresponses[J]. Advanced Functional Materials, 2020, 30(16):1908602. [18] WAN M, WANG Q, WANG R, et al. Platelet-derived porous nanomotor for thrombus therapy[J]. Science Advances, 2020, 6(22):eaaz9014. [19] AGHAKHANI A, YASA O, WREDE P, et al. Acoustically powered surface-slipping mobile microrobots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7):3469-3477. [20] ZHANG Y, HESS H. Chemically-powered swimming and diffusion in the microscopic world[J]. Nature Reviews Chemistry, 2021, 5(7):500-510. [21] SUN L, YU Y, CHEN Z, et al. Biohybrid robotics with living cell actuation[J]. Chemical Society Reviews, 2020, 49(12):4043-4069. [22] 李梦月, 杨佳, 焦念东, 等. 微纳米机器人的最新研究进展综述[J]. 机器人, 2022, 44(6):732-749. LI Mengyue, YANG Jia, JIAO Niandong, et al. Review on the latest research progress of micro-nano robots[J]. Robot, 2022, 44(6):732-749. [23] SITTI M, WIERSMA D S. Pros and cons:Magnetic versus optical microrobots[J]. Advanced Materials, 2020, 32(20):1906766. [24] ZHANG J, REN Z, HU W, et al. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly[J]. Science Robotics, 2021, 6(53):abf0112. [25] YANG Z, YANG H, CAO Y, et al. Magnetically actuated continuum medical robots:A review[J]. Advanced Intelligent Systems, 2023, 5(6):2200416. [26] MOHAGHEGHIAN E, LUO J, YAVITT F M, et al. Quantifying stiffness and forces of tumor colonies and embryos using a magnetic microrobot[J]. Science Robotics, 2023, 8(74):eadc9800. [27] ZHENG L, JIA Y, DONG D, et al. 3D navigation control of untethered magnetic microrobot in centimeter-scale workspace based on field-of-view tracking scheme[J]. IEEE Transactions on Robotics, 2022, 38(3):1583-1598. [28] ARCESE L, FRUCHARD M, FERREIRA A. Adaptive controller and observer for a magnetic microrobot[J]. IEEE Transactions on Robotics, 2013, 29(4):1060-1067. [29] NELSON B J, KALIAKATSOS I K, ABBOTT J J. Microrobots for minimally invasive medicine[M]. Palo Alto:Annual Reviews, 2010. [30] WANG B, CHAN K F, YUAN K, et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging[J]. Science Robotics, 2021, 6(52):abd2813. [31] YANG L, JIANG J, GAO X, et al. Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning[J]. Nature Machine Intelligence, 2022, 4(5):480-493. [32] SITTI M, CEYLAN H, HU W, et al. Biomedical applications of untethered mobile milli/microrobots[J]. Proceedings of the IEEE, 2015, 103(2):205-224. [33] ZHENG Z, WANG H, DEMIR S O, et al. Programmable aniso-electrodeposited modular hydrogel microrobots[J]. Science Advances, 2022, 8(50):eade6135. [34] YANG L, ZHANG T, TAN R, et al. Functionalized spiral-rolling millirobot for upstream swimming in blood vessel[J]. Advanced Science, 2022, 9(16):2200342. [35] WANG T, UGURLU H, YAN Y, et al. Adaptive wireless millirobotic locomotion into distal vasculature[J]. Nature Communications, 2022, 13(1):4465. [36] BYUN S, LIM J M, PAIK S J, et al. Barbed micro-spikes for micro-scale biopsy[J]. Journal of Micromechanics and Microengineering, 2005, 15(6):1279-1284. [37] DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428):703-706. [38] HOANG M C, LE V H, NGUYEN K T, et al. A robotic biopsy endoscope with magnetic 5-DOF locomotion and a retractable biopsy punch[J]. Micromachines, 2020, 11(1):98. [39] LEE W, NAM J, KIM J, et al. Steering, tunneling, and stent delivery of a multifunctional magnetic catheter robot to treat occlusive vascular disease[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1):391-400. [40] COLLINS C M, YANG B, YANG Q X, et al. Numerical calculations of the static magnetic field in three-dimensional multi-tissue models of the human head[J]. Magnetic Resonance Imaging, 2002, 20(5):413-424. [41] CURTHOYS I S, OMAN C M. Dimensions of the horizontal semicircular duct, ampulla and utricle in the human[J]. Acta Oto-Laryngologica, 1987, 103(3-4):254-261. [42] WANG Q, DU X, JIN D, et al. Real-time ultrasound doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow[J]. ACS Nano, 2022, 16(1):604-616. [43] LIU X, YANG Y, INDA M E, et al. Magnetic living hydrogels for intestinal localization, retention, and diagnosis[J]. Advanced Functional Materials, 2021, 31(27):2010918. [44] XIANG Y, ZHANG J. A theoretical investigation of the ability of magnetic miniature robots to exert forces and torques for biomedical functionalities[J]. IEEE Robotics and Automation Letters, 2023, 8(3):1771-1777. [45] YE M, ZHOU Y, ZHAO H, et al. Magnetic microrobots with folate targeting for drug delivery[J]. Cyborg and Bionic Systems, 2023, 4:0019. [46] KE X, YONG H, XU F, et al. Synergistical mechanical design and function integration for insect-scale on-demand configurable multifunctional soft magnetic robots[J]. Soft Robotics, 2023, 11(1):43-56. [47] XU Z, CHEN Y, XU Q. Spreadable magnetic soft robots with on-demand hardening[J]. Research, 2023, 6(262):1-13. [48] SUN M, HAO B, YANG S, et al. Exploiting ferrofluidic wetting for miniature soft machines[J]. Nature Communications, 2022, 13(1):7919. [49] XU H, WU S, LIU Y, et al. 3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators[J]. Nature Nanotechnology, 2024, 19:494-503. [50] YANG M, ZHANG Y, MOU F, et al. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis[J]. Science Advances, 2023, 9(48):eadk7251. [51] WANG S, QIU M, LIU J, et al. Preshaped 4d photocurable ultratough organogel microcoils for personalized endovascular embolization[J]. Advanced Materials, 2023, 35(52):2308130. [52] FU S, CHEN B, LI D, et al. A magnetically controlled guidewire robot system with steering and propulsion capabilities for vascular interventional surgery[J]. Advanced Intelligent Systems, 2023, 5(11):2300267. [53] FU S, ZHANG S, YIN M, et al. A magnetically steerable and automatically propulsion guidewire robot system for vascular interventional surgery[C]//Proceedings of the 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR). Guiyang:IEEE, 2022:57-62. [54] YIM S, SITTI M. 3-D localization method for a magnetically actuated soft capsule endoscope and its applications[J]. IEEE Transactions on Robotics, 2013, 29(5):1139-1151. [55] SA J, PARK J, JUNG E, et al. Separable and recombinable magnetic robot for robotic endovascular intervention[J]. IEEE Robotics and Automation Letters, 2023, 8(4):1881-1888. [56] ZHANG H, LI Z, GAO C, et al. Dual-responsive biohybrid neutrobots for active target delivery[J]. Science Robotics, 2021, 6(52):eaaz9519. [57] ABBOTT J J, PEYER K E, LAGOMARSINO M C, et al. How should microrobots swim?[J]. International Journal of Robotics Research, 2009, 28(11-12):1434-1447. [58] PEYER K E, ZHANG L, NELSON B J. Bio-inspired magnetic swimming microrobots for biomedical applications[J]. Nanoscale, 2013, 5(4):1259-1272. [59] DUPONT P E, NELSON B J, GOLDFARB M, et al. A decade retrospective of medical robotics research from 2010 to 2020[J]. Science Robotics, 2021, 6(60):eabi8017. [60] LI T, YU S, SUN B, et al. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels[J]. Science Advances, 2023, 9(18):eadg4501. [61] KIM Y, GENEVRIERE E, HARKER P, et al. Telerobotic neurovascular interventions with magnetic manipulation[J]. Science Robotics, 2022, 7(65):eabg9907. [62] PHELAN M F, TIRYAKI M E, LAZOVIC J, et al. Heat-mitigated design and lorentz force-based steering of an MRI driven microcatheter toward minimally invasive surgery[J]. Advanced Science, 2022, 9(10):2105352. [63] HONG A, PETRUSKA A J, ZEMMAR A, et al. Magnetic control of a flexible needle in neurosurgery[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(2):616-627. [64] WANG L, ZHENG D, HARKER P, et al. Evolutionary design of magnetic soft continuum robots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(21):e2021922118. [65] KIM Y, PARADA G A, LIU S D, et al. Ferromagnetic soft continuum robots[J]. Science Robotics, 2019, 4(33):eaax7329. [66] SWANEY P J, MAHONEY A W, HARTLEY B I, et al. Toward transoral peripheral lung access:Combining continuum robots and steerable needles[J]. Journal of Medical Robotics Research, 2017, 2(1):1750001. [67] HAJIAGHAJANI A, KIM D, ABDOLALI A, et al. Patterned magnetic fields for remote steering and wireless powering to a swimming microrobot[J]. IEEE-ASME Transactions on Mechatronics, 2020, 25(1):207-216. [68] GU H, MOECKLI M, EHMKE C, et al. Self-folding soft-robotic chains with reconfigurable shapes and functionalities[J]. Nature Communications, 2023, 14(1):1263. [69] YIM S, SITTI M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope[J]. IEEE Transactions on Robotics, 2012, 28(1):183-194. [70] ZHANG C, PAN C, CHAN K F, et al. Wirelessly powered deformable electronic stent for noninvasive electrical stimulation of lower esophageal sphincter[J]. Science Advances, 2023, 9(10):eade8622. [71] SUN M, CHAN K F, ZHANG Z, et al. Magnetic microswarm and fluoroscopy-guided platform for biofilm eradication in biliary stents[J]. Advanced Materials, 2022, 34(34):2201888. [72] GE T J, ROQUERO D M, HOLTON G H, et al. A magnetic hydrogel for the efficient retrieval of kidney stone fragments during ureteroscopy[J]. Nature Communications, 2023, 14(1):3711. [73] LIN D, WANG J, JIAO N, et al. A flexible magnetically controlled continuum robot steering in the enlarged effective workspace with constraints for retrograde intrarenal surgery[J]. Advanced Intelligent Systems, 2021, 3(10):2000211. [74] YANG Y, WANG J, WANG L, et al. Magnetic soft robotic bladder for assisted urination[J]. Science Advances, 2022, 8(34):eabq1456. [75] PENG X, URSO M, BALVAN J, et al. Self-propelled magnetic dendrite-shaped microrobots for photodynamic prostate cancer therapy[J]. Angewandte Chemie, 2022, 61(48):e202213505. [76] MAYORGA-MARTINEZ C C, ZELENKA J, KLIMA K, et al. Multimodal-driven magnetic microrobots with enhanced bactericidal activity for biofilm eradication and removal from titanium mesh[J]. Advanced Materials, 2023, 35(3):2300191. [77] ABBES M, BELHARET K, SOUISSI M, et al. Design of a robotized magnetic platform for targeted drug delivery in the cochlea[J]. IRBM, 2023, 44(1):100728. [78] ZHANG T, YANG L, YANG X, et al. Millimeter-scale soft continuum robots for large-angle and high-precision manipulation by hybrid actuation[J]. Advanced Intelligent Systems, 2021, 3(2):2000189. [79] YANG H, YANG Z, JIN D, et al. Magnetic micro-driller system for nasolacrimal duct recanalization[J]. IEEE Robotics and Automation Letters, 2022, 7(3):7367-7374. [80] ABBOTT J J. Parametric design of tri-axial nested helmholtz coils[J]. Review of Scientific Instruments, 2015, 86(5):054701. [81] MAHONEY A W, ABBOTT J J. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy[J]. International Journal of Robotics Research, 2016, 35(1-3):129-147. [82] NORTON J C, SLAWINSKI P R, LAY H S, et al. Intelligent magnetic manipulation for gastrointestinal ultrasound[J]. Science Robotics, 2019, 4(31):eaav7725. [83] DILLER E, GILTINAN J, LUM G Z, et al. Six-degree-of-freedom magnetic actuation for wireless microrobotics[J]. International Journal of Robotics Research, 2016, 35(1-3):114-128. [84] NGUYEN B L, MERINO J L, GANG E S. Remote navigation for ablation procedures-a new step forward in the treatment of cardiac arrhythmias[J]. European Cardiology, 2010, 6(3):50-56. [85] GUCKEL D, NIEMANN S, DITZHAUS M, et al. Long-term efficacy and impact on mortality of remote magnetic navigation guided catheter ablation of ventricular arrhythmias[J]. Journal of Clinical Medicine, 2021, 10(20):4695. [86] ABBOTT J J, DILLER E, PETRUSKA A J. Magnetic methods in robotics[M]. Palo Alto:Annual Reviews, 2020. [87] ZHANG Y, YANG D, WANG D. Polarization criteria detection of a generalized spatial universal rotating magnetic vector[J]. IEEE Transactions on Magnetics, 2018, 54(7):5700208. [88] POURKAND A, ABBOTT J J. A critical analysis of eight-electromagnet manipulation systems:The role of electromagnet configuration on strength, isotropy, and access[J]. IEEE Robotics and Automation Letters, 2018, 3(4):2957-2962. [89] KUMMER M P, ABBOTT J J, KRATOCHVIL B E, et al. Octomag:An electromagnetic system for 5-DOF wireless micromanipulation[J]. IEEE Transactions on Robotics, 2010, 26(6):1006-1017. [90] HEUNIS C M, BARATA B F, FURTADO G P, et al. Collaborative surgical robots:Optical tracking during endovascular operations[J]. IEEE Robotics & Automation Magazine, 2020, 27(3):29-44. [91] YANG Z, YANG L, ZHANG M, et al. Magnetic control of a steerable guidewire under ultrasound guidance using mobile electromagnets[J]. IEEE Robotics and Automation Letters, 2021, 6(2):1280-1287. [92] YANG L, DU X, YU E, et al. Deltamag:An electromagnetic manipulation system with parallel mobile coils[C]//Proceedings of the 2019 IEEE International Conference on Robotics and Automation (ICRA). Montreal:IEEE, 2019:9814-9820. [93] MOYA A, SANCHO-TELLO M J, ARENAL A, et al. Innovations in heart rhythm disturbances:Cardiac electrophysiology, arrhythmias, and cardiac pacing[J]. Revista Espanola De Cardiologia, 2013, 66(2):116-123. [94] CHAUTEMS C, TONAZZINI A, BOEHLER Q, et al. Magnetic continuum device with variable stiffness for minimally invasive surgery[J]. Advanced Intelligent Systems, 2020, 2(6):1900086. [95] HEUNIS C M, WANG Z, DE VENTE G, et al. A magnetic bio-inspired soft carrier as a temperature-controlled gastrointestinal drug delivery system[J]. Macromolecular Bioscience, 2023, 23(7):2200559. [96] YONG H, KE X, XU F, et al. Bioinspired synergy strategies empower small-scale robots with higher performance[J]. Advanced Intelligent Systems, 2023, 6(2):2300061. [97] HUANG C, LAI Z, ZHANG L, et al. A magnetically controlled soft miniature robotic fish with a flexible skeleton inspired by zebrafish[J]. Bioinspiration & Biomimetics, 2021, 16(6):065004. [98] KIM S J, JEON S M, NAM J K, et al. Closed-loop control of a self-positioning and rolling magnetic microrobot on 3D thin surfaces using biplane imaging[J]. IEEE Transactions on Magnetics, 2014, 50(11):1-4. [99] ZHENG L, JIA Y, DONG D, et al. 3D navigation control of untethered magnetic microrobot in centimeter-scale workspace based on field-of-view tracking scheme[J]. IEEE Transactions on Robotics, 2022, 38(3):1583-1598. [100] 向红标, 杨大虎, 杨璐, 等. 复杂环境下磁弹性微型游泳机器人的路径规划与识别跟踪[J]. 机械工程学报, 2023, 59(5):89-99. XIANG Hongbiao, YANG Dahu, YANG Lu, et al. Path planning and recognition tracking of a magnetoelastic miniature swimmer in complex environment[J]. Journal of Mechanical Engineering, 2023, 59(5):89-99. [101] 向红标, 程旭, 李梦伟, 等. 磁弹性微型游泳机器人在外部干扰和复杂路径下的精确跟踪控制[J]. 机械工程学报, 2022, 58(7):93-102. XIXANG Hongbiao, CHENG Xu, LI Mengwei, et al. Accurate tracking control of magnetoelastic elastic miniature swimmer under external disturbance and complex path[J]. Journal of Mechanical Engineering, 2022, 58(7):93-102. [102] 向红标, 陈卓, 刘霁莹, 等. 磁控微型软体四足水下机器人双模式运动特性的仿真与试验[J]. 机械工程学报, 2023, 59(11):179-188. XIANG Hongbiao, CHEN Zhuo, LIU Jiying, et al. Simulation and experiment of dual-mode motion characteristics of a magnetically controlled miniature soft quadruped underwater robot[J]. Journal of Mechanical Engineering, 2023, 59(11):179-188. [103] MOHAMMADI A, SPONG M W. Integral line-of-sight path following control of magnetic helical microswimmers subject to step-out frequencies[J]. Automatica, 2021, 128:109554. [104] HUANG C, LAI Z, WU X, et al. Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots[J]. Cyborg and Bionic Systems, 2022, 2022:0004. [105] XU Y, LI K, ZHAO Z, et al. A novel system for closed-loop simultaneous magnetic actuation and localization of WCE based on external sensors and rotating actuation[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(4):1640-1652. [106] PANE S, ZHANG M, IACOVACCI V, et al. Contrast-enhanced ultrasound tracking of helical propellers with acoustic phase analysis and comparison with color doppler[J]. APL. Bioengineering, 2022, 6(3):036102. [107] XU T, HWANG G, ANDREFF N, et al. Planar path following of 3-D steering scaled-up helical microswimmers[J]. IEEE Transactions on Robotics, 2015, 31(1):117-127. [108] YANG Y, BEVAN M A, LI B. Hierarchical planning with deep reinforcement learning for 3D navigation of microrobots in blood vessels[J]. Advanced Intelligent Systems, 2022, 4(11):2200168. [109] XU S, LIU J, YANG C, et al. A learning-based stable servo control strategy using broad learning system applied for microrobotic control[J]. IEEE Transactions on Cybernetics, 2022, 52(12):13727-13737. [110] ZHANG Y, YANG H, YANG D, et al. Polynomial profile optimization method of a magnetic petal-shaped capsule robot[J]. Mechatronics, 2020, 65:102309. [111] 张永顺, 王智博, 刘旭, 等. 磁控双半球胶囊机器人姿态的图像检测方法[J]. 华中科技大学学报, 2020, 48(10):14-19. ZHANG Yongshun, WANG Zhibo, LIU Xu, et al. Image detection method for posture ofmagnetically controlled dual hemisphere capsule robot[J]. Journal of Huazhong University of Science and Technology, 2020, 48(10):14-19. [112] 张永顺, 纪璇, 刘旭, 等. 磁驱动双半球胶囊机器人滚动动态性能研究[J]. 机械工程学报, 2022, 58(1):10-18. ZHANG Yongshun, JI Xuan, LIU Xu, et al. Research on rolling locomotion dynamics characteristics of a dual hemispherical capsule robot actuated by rotating magnetic field[J]. Journal of Mechanical Engineering, 2022, 58(1):10-18. [113] VALDASTRI P, WEBSTER R J, QUAGLIA C, et al. A new mechanism for mesoscale legged locomotion in compliant tubular environments[J]. IEEE Transactions on Robotics, 2009, 25(5):1047-1057. [114] WANG W, YAN G, HAN D, et al. Design and testing of a novel gastrointestinal microrobot[J]. Biomedical Microdevices, 2020, 22(4):82. [115] MANAMANCHAIYAPORN L, XU T, WU X. Magnetic soft robot with the triangular head-tail morphology inspired by lateral undulation[J]. IEEE-ASME Transactions on Mechatronics, 2020, 25(6):2688-2699. [116] XU S, XU T, LI D, et al. A robot motion learning method using broad learning system verified by small-scale fish-like robot[J]. IEEE Transactions on Cybernetics, 2023, 53(9):6053-6065. [117] WANG Y, CHEN H, LAW J, et al. Ultrafast miniature robotic swimmers with upstream motility[J]. Cyborg and Bionic Systems, 2023, 4:0015. [118] LEE W, NAM J, KIM J, et al. Effective locomotion and precise unclogging motion of an untethered flexible-legged magnetic robot for vascular diseases[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2):1388-1397. [119] HU W, LUM G Z, MASTRANGELI M, et al. Small-scale soft-bodied robot with multimodal locomotion[J]. Nature, 2018, 554(7690):81-85. [120] YANG L, MIAO J, LI G, et al. Soft tunable gelatin robot with insect-like claw for grasping, transportation, and delivery[J]. ACS Applied Polymer Materials, 2022, 4(8):5431-5440. [121] LE V H, RODRIGUEZ H L, LEE C, et al. A soft-magnet-based drug-delivery module for active locomotive intestinal capsule endoscopy using an electromagnetic actuation system[J]. Sensors and Actuators A-Physical, 2016, 243:81-89. [122] SUN X, ZHANG P, YE Z, et al. A soft capsule for magnetically driven drug delivery based on a hard-magnetic elastomer foam[J]. ACS Biomaterials Science & Engineering, 2023, 9(12):6915-6925. [123] SOON R H, YIN Z, DOGAN M A, et al. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications[J]. Nature Communications, 2023, 14(1):3320. [124] ZE Q, WU S, DAI J, et al. Spinning-enabled wireless amphibious origami millirobot[J]. Nature Communications, 2022, 13(1):3118. [125] KIM S H, ISHIYAMA K. Magnetic robot and manipulation for active-locomotion with targeted drug release[J]. IEEE-ASME Transactions on Mechatronics, 2014, 19(5):1651-1659. [126] WANG Z, GUO S, GUO J, et al. Selective motion control of a novel magnetic-driven minirobot with targeted drug sustained-release function[J]. IEEE-ASME Transactions on Mechatronics, 2022, 27(1):336-347. [127] QIN Y, CAI Z, HAN J. Design and control of a magnetically-actuated anti-interference microrobot for targeted therapeutic delivery[J]. IEEE Robotics and Automation Letters, 2023, 8(9):5672-5679. [128] CAI Z, QIN Y, HAN J. Design and control of a miniaturized magnetic-driven deformable capsule robot for targeted drug delivery[J]. IEEE Transactions on Industrial Electronics, 2023, 71(8):9150-9160. [129] SONG S, YUAN S, ZHANG F, et al. Integrated design and decoupled control of anchoring and drug release for wireless capsule robots[J]. IEEE-ASME Transactions on Mechatronics, 2022, 27(5):2897-2907. [130] LIU J, WANG Q, WANG H, et al. Design and fabrication of a catheter magnetic navigation system for cardiac arrhythmias[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4):4402804. [131] PITTIGLIO G, LLOYD P, DA VEIGA T, et al. Patient-specific magnetic catheters for atraumatic autonomous endoscopy[J]. Soft Robotics, 2022, 9(6):1120-1133. [132] ZHANG S, YIN M, LAI Z, et al. Design and characteristics of 3D magnetically steerable guidewire system for minimally invasive surgery[J]. IEEE Robotics and Automation Letters, 2022, 7(2):4040-4046. [133] ZHOU C, YANG Y, WANG J, et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting[J]. Nature Communications, 2021, 12(1):5072. [134] LIU D, LIU X, CHEN Z, et al. Magnetically driven soft continuum microrobot for intravascular operations in microscale[J]. Cyborg and Bionic Systems, 2022, 2022:9850832. [135] ZHANG K, KRAFFT A J, UMATHUM R, et al. Real-time MR navigation and localization of an intravascular catheter with ferromagnetic components[J]. Magnetic Resonance Materials in Physics Biology and Medicine, 2010, 23(3):153-163. [136] GOSSELIN F P, LALANDE V, MARTEL S. Characterization of the deflections of a catheter steered using a magnetic resonance imaging system[J]. Medical Physics, 2011, 38(9):4994-5002. [137] LALANDE V, GOSSELIN F P, VONTHRON M, et al. In vivo demonstration of magnetic guidewire steerability in a MRI system with additional gradient coils[J]. Medical Physics, 2015, 42(2):969-976. [138] ROBERTS T P L, HASSENZAHL W V, HETTS S W, et al. Remote control of catheter tip deflection:An opportunity for interventional MRI[J]. Magnetic Resonance in Medicine, 2002, 48(6):1091-1095. [139] LOSEY A D, LILLANEY P, MARTIN A J, et al. Magnetically assisted remote-controlled endovascular catheter for interventional MR imaging:In vitro navigation at 1.5 T versus X-ray fluoroscopy[J]. Radiology, 2014, 271(3):862-869. [140] GUDINO N, HEILMAN J A, DERAKHSHAN J J, et al. Control of intravascular catheters using an array of active steering coils[J]. Medical Physics, 2011, 38(7):4215-4224. [141] CHARREYRON S L, GABBI E, BOEHLER Q, et al. A magnetically steered endolaser probe for automated panretinal photocoagulation[J]. IEEE Robotics and Automation Letters, 2019, 4(2):xvii-xxiii. [142] CHARREYRON S L, BOEHLER Q, DANUN A N, et al. A magnetically navigated microcannula for subretinal injections[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(1):119-129. [143] BRUNS T L, RIOJAS K E, ROPELLA D S, et al. Magnetically steered robotic insertion of cochlear-implant electrode arrays:System integration and first-in-cadaver results[J]. IEEE Robotics and Automation Letters, 2020, 5(2):2240-2247. [144] 徐天添, 黄晨阳, 刘佳, 等. 磁驱动微型机器人的智能控制发展现状[J]. 机器人, 2023, 45(5):603-625. XU Tiantian, HUANG Chenyang, LIU Jia, et al. Advances in intelligent control of magnetically actuated micro-robots[J]. 2023, 45(5):603-625. [145] 王永青, 邓建辉, 李特, 等. 软体机器人3D打印制造技术研究综述[J]. 机械工程学报, 2021, 57(15):186-198. WANG Yongqing, DENG Jianhui, LI Te, et al. Review of research on 3D printing manufacturing technology of soft robots[J]. Journal of Mechanical Engineering, 2021, 57(15):186-198. [146] YU J, WANG B, DU X, et al. Ultra-extensible ribbon-like magnetic microswarm[J]. Nature Communications, 2018, 9:3260. [147] ZHANG L, ABBOTT J J, DONG L, et al. Artificial bacterial flagella:Fabrication and magnetic control[J]. Applied Physics Letters, 2009, 94(6):064107. [148] ZHENG Z, WANG H, DONG L, et al. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling[J]. Nature Communications, 2021, 12(1):411. [149] YANG L, SUN M, ZHANG M, et al. Multimodal motion control of soft ferrofluid robot with environment and task adaptability[J]. IEEE-ASME Transactions on Mechatronics, 2023, 28(6):3099-3109. [150] SUN M, TIAN C, MAO L, et al. Reconfigurable magnetic slime robot:Deformation, adaptability, and multifunction[J]. Advanced Functional Materials, 2022, 32(26):2112508. [151] YANG X, SHANG W, LU H, et al. An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications[J]. Science Robotics, 2020, 5(48):eabc8191. [152] GO G, YOO A, SONG H W, et al. Multifunctional biodegradable microrobot with programmable morphology for biomedical applications[J]. ACS Nano, 2021, 15(1):1059-1076. [153] CUI J, HUANG T, LUO Z, et al. Nanomagnetic encoding of shape-morphing micromachines[J]. Nature, 2019, 575(7781):164-168. [154] DONG X, SITTI M. Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms[J]. International Journal of Robotics Research, 2020, 39(5):617-638. [155] LIU Y, CHEN H, ZOU Q, et al. Automatic navigation of microswarms for dynamic obstacle avoidance[J]. IEEE Transactions on Robotics, 2023, 39(4):2770-2785. [156] FAN X, JIANG Y, LI M, et al. Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces[J]. Science Advances, 2022, 8(37):eabq1677. [157] SUN M, YANG S, JIANG J, et al. Horizontal and vertical coalescent microrobotic collectives using ferrofluid droplets[J]. Advanced Materials, 2023, 35(23):2300521. [158] WANG L Y, GAO H, SUN H Y, et al. Reconfigurable vortex-like paramagnetic nanoparticle swarm with upstream motility and high body-length ratio velocity[J]. Research, 2023, 6:0088. [159] WANG L, SONG H, SUN Y, et al. Multi-mode motion control of reconfigurable vortex-shaped microrobot swarms for targeted tumor therapy[J]. IEEE Robotics and Automation Letters, 2022, 7(2):3578-3583. [160] XIE H, SUN M, FAN X, et al. Reconfigurable magnetic microrobot swarm:Multimode transformation, locomotion, and manipulation[J]. Science Robotics, 2019, 4(28):eaav8006. [161] XIE H, FAN X, SUN M, et al. Programmable generation and motion control of a snakelike magnetic microrobot swarm[J]. IEEE-ASME Transactions on Mechatronics, 2019, 24(3):902-912. [162] DU X, WANG Q, JIN D, et al. Real-time navigation of an untethered miniature robot using mobile ultrasound imaging and magnetic actuation systems[J]. IEEE Robotics and Automation Letters, 2022, 7(3):7668-7675 |
[1] | 孙广开, 张兴硕, 何彦霖, 周康鹏, 祝连庆. 面向连续体机器人精密操作的多芯光纤三维形状与位置测量误差研究[J]. 机械工程学报, 2024, 60(3): 68-82. |
[2] | 张永顺, 邢立君, 董海, 马钰璘. 双半球胶囊机器人滑滚驱动机理[J]. 机械工程学报, 2023, 59(23): 87-95. |
[3] | 严鲁涛, 王琦, 李海源, 张勤俭. 基于形状记忆合金驱动的连续体机器人路径规划[J]. 机械工程学报, 2023, 59(15): 50-61. |
[4] | 孙广开, 何彦霖, 于洋, 韩静, 赵冠棋, 周康鹏, 祝连庆. 连续体手术机器人光纤导航技术现状和展望[J]. 机械工程学报, 2023, 59(1): 1-18. |
[5] | 张永顺, 纪璇, 刘旭, 刘冠喜, 刘振虎. 磁驱动双半球胶囊机器人滚动动态性能研究[J]. 机械工程学报, 2022, 58(1): 10-18. |
[6] | 何天宝, 郭闯强, 任浩, 姜力. 静脉穿刺机器人研究进展[J]. 机械工程学报, 2021, 57(3): 1-10. |
[7] | 曹晟阁, 于靖军, 潘杰, 裴旭. 滚动接触柔性连续体机器人的设计与运动能力分析[J]. 机械工程学报, 2021, 57(19): 21-29. |
[8] | 严鲁涛, 王琦, 李海源, 李端玲, 夏继强. 基于SMA驱动的连续体手术机器人研究综述[J]. 机械工程学报, 2021, 57(11): 138-152. |
[9] | 张永顺, 田丰, 王智博, 杨慧远, 刘旭. 双半球型胶囊机器人弯曲肠道内视觉导航方法[J]. 机械工程学报, 2020, 56(7): 27-34. |
[10] | 张永顺, 迟明路, 程存欣, 张雨. 一种高性能花瓣廓形胶囊机器人*[J]. 机械工程学报, 2017, 53(3): 9-16. |
[11] | 窦永磊 汪满新 王攀峰 黄田. 一种6自由度混联机器人静刚度分析[J]. 机械工程学报, 2015, 51(7): 38-44. |
[12] | 倪自强, 王田苗, 刘达. 医疗机器人技术发展综述[J]. 机械工程学报, 2015, 51(13): 45-52. |
[13] | 张永顺;孙颖;杜春雨;王娜;迟明路. 胶囊机器人弯曲环境通过性与磁矢量控制[J]. , 2014, 50(5): 26-32. |
[14] | 张永顺;徐长亮;迟明路;白建卫;程存欣. 三维梯度旋转磁场内胶囊机器人磁力[J]. , 2014, 50(17): 1-7. |
[15] | 张永顺;王楠;马壮. 肠道胶囊机器人的转向随动力学模型[J]. , 2012, 48(1): 84-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||