[1] ZEMMAR A, LOZANO A M, NELSON B J. The rise of robots in surgical environments during COVID-19[J]. Nature Machine Intelligence, 2020, 2:566-572. [2] 何天宝, 郭闯强, 任浩, 等. 静脉穿刺机器人研究进展[J]. 机械工程学报, 2021, 57(3):1-10. HE Tianbao, GUO Chuangqiang, REN Hao, et al. Research progress of venipuncture robot[J]. Journal of Mechanical Engineering, 2021, 57(3):1-10. [3] 严鲁涛, 王琦, 李海源, 等. 基于SMA驱动的连续体手术机器人研究综述[J]. 机械工程学报, 2021, 57(11):138-152. YAN Lutao, WANG Qi, LI Haiyuan, et al. Review of continue surgical robot actuated by SMA[J]. Journal of Mechanical Engineering, 2021, 57(11):138-152. [4] DA VEIGA T, CHANDLER J H, LLOYD P, et al. Challenges of continuum robots in clinical context:A review[J]. Progress in Biomedical Engineering, 2020, 2(3):032003. [5] VAN HERWAARDEN J A, JANSEN M M, VONKEN E P A, et al. First in human clinical feasibility study of endovascular navigation with fiber optic Realshape (FORS) technology[J]. European Journal of Vascular and Endovascular Surgery, 2021, 61(2):317-325. [6] FLORIS I, ADAM J M, CALDERON P A, et al. Fiber optic shape sensors:A comprehensive review[J]. Optics and Lasers in Engineering, 2020, 139:106508. [7] HANSEN MEDICAL. Hansen Medical and Philips reinforce collaboration in robotic systems for endovascular interventions[EB/OL].[2013-07-17]. https://www.usa.philips.com/a-w/about/news/archive/standard/news/press/2013/20130717-Hansen-Medical-and-Philips-reinforce-collaboration-in-robotic-systems-for-endovascular-interventions.html. [8] INTUITIVE SURGICAL. Move surgery forward again da Vinci SP[EB/OL].[2021-01-01]. https://www.intuitive.com/en-us/products-and-services/da-vinci/systems/sp. [9] INTUITIVE SURGICAL. How Ion Works[EB/OL].[2021-01-01]. https://www.intuitive.com/en-us/products-and-services/ion/how-ion-works. [10] TECH BRIEFS. NASA-inspired shape-sensing fibers enable minimally invasive surgery[EB/OL].[2008-02-01]. https://www.techbriefs.com/component/content/article/tb/pub/features/articles/2585?start=2. [11] JANSEN M, KHANDIGE A, KOBEITER H, et al. Three dimensional visualisation of endovascular guidewires and catheters based on laser light instead of fluoroscopy with fiber optic realshape technology:Preclinical results[J]. European Journal of Vascular and Endovascular Surgery, 2020, 60(1):135-143. [12] GREGORY C, PAUL T, LARA F M, et al. System for tracking and determining characteristics of inflatable medical instruments using fiber-optical realshape data:European, 16730298.3[P], 2016-06-08[2020-05-20]. [13] FROGGATT M, MOORE J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 1998, 37(10):1735-1740. [14] MOORE J P, ROGGE M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 2012, 20(3):2967. [15] ROGGE M D, MOORE J P. Shape sensing using a multi-core optical fiber having an arbitrary initial shape in the presence of exterinsic forces:United States, US 2014/0053654 A1[P], 13/591, 320. [16] CHAN H M, PARKER JR A R. In-situ three-dimensional shape rendering from strain values obtained through optical fiber sensors:United States, US 8, 970, 845 B1[P], 14/106, 947. [17] FROGGATT M E, DUNCAN R G. Fiber optic position and/or shape sensing based on rayleiigh scatter:United States, US 7, 772, 541 B2[P], 12/047, 056. [18] ASKINS C G, MILLER G A, FRIEBELE EJ. Bend and twist sensing in a multi-core optical fiber[C]//OFC/NFOEC 2008-2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference. San Diego:IEEE, 2008, 1-3. [19] PARK Y L, ELAYAPERUMAL S, DANIEL B, et al. Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(6):906-915. [20] ELAYAPERUMAL S, PLATA J C, HOLBROOK A B, et al. Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle[J]. IEEE Transactions on Medical Imaging, 2014, 33(11):2128-2139. [21] ROESTHUIS R J, KEMP M, DOBBELSTEEN V D, et al. Three-dimensional needle shape reconstruction using an array of fiber bragg grating sensors[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(4):1115-1126. [22] XU R, YURKEWIICH A, PATEL R V. Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors[J]. IEEE Robotics and Automation Letters, 2016, 1(2):1052-1059. [23] FLEXMAN M L, NERIMAN M M, KAHYA N, et al. Fiber-optic realshape sensing feeding tube:United States, US 2019/0046417[P], PCT/EP2017/053023. [24] 刘铁根, 于哲, 江俊峰, 等. 分立式与分布式光纤传感关键技术研究进展[J]. 物理学报, 2017, 66(7), 070705. LIU Tiegen, YU Zhe, JIANG Junfeng, et al. Advances of some critical technologies in discrete and distributed optical fiber sensing research[J]. Acta Physica Sinica, 2017, 66(7):070705. [25] MALEKZADEH M, GUL M, KWON II-B, et al. An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis[J]. Smart Structures and Systems, 2014, 14(5):917-942. [26] 孙艮, 白浩杰, 石玉伦, 等. 光频域反射计的研究进展及应用[J]. 激光与光电子学进展, 2020, 57(5), 050007. SUN Gen, BAI Haojie, SHI Yulun, et al. Research progress and application of optical frequency domain reflectometer[J]. Laser & Optoelectronics Progress, 2020, 57(5):050007. [27] 况洋, 吴昊庭, 张敬栋, 等. 分布式多参数光纤传感技术研究进展[J]. 光电工程, 2018, 45(9):170678. KUANG Yang, WU Haoting, ZHANG Jingdong, et al. Advances of key technologies on distributed fiber system for multi-parameter sensing[J]. Opto-Electronic Engineering, 2018, 45(9):170678. [28] 胡鑫鑫, 王亚辉, 赵乐, 等. 布里渊光相干域分析技术研究进展[J]. 中国激光, 2021, 48(1):0100001. HU Xinxin, WANG Yahui, ZHAO Le, et al. Research progress in Brillouin optical correlation domain analysis technology[J]. Chinese Journal of Lasers, 2021, 48(1):0100001. [29] FLORIS I. Optical multicore fiber shape sensors:A numerical and experimental performance assessment[D]. Valencia:UNIVERSITAT POLITÈCNICA DE VALÈNCIA, 2020. [30] KHAN F, DONDER A, GALVAN S, et al. Pose measurement of flexible medical instruments using fiber bragg gratings in multi-core fiber[J]. IEEE Sensors Journal, 2020, 20(18):10955-10962. [31] KHAN F, DENASI A, BARRERA D, et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal, 2019, 19(14):5878-5884. [32] CUI J, ZHAO S, YANG C, et al. Parallel transport frame for fiber shape sensing[J]. IEEE Photonics Journal, 2017, 10(1):1-12. [33] MOORE J P. Shape sensing using multi-core fiber[C]//Optical Fiber Communications Conference and Exhibition (OFC). California:IEEE, 2015, 1-3. [34] MOON H, JEONG J, KANG S, et al. Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery[J]. Optics and Lasers in Engineering, 2014, 59:50-55. [35] ROESTHUIS R J, KEMP M, VAN DEN DOBBELSTEEN J J, et al. Three-dimensional needle shape reconstruction using an array of fiber bragg grating sensors[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(4):1115-1126. [36] FLORIS I, MADRIGAL J, SALES S, et al. Twisting measurement and compensation of optical shape sensor based on spun multicore fiber[J]. Mechanical Systems and Signal Processing, 2020, 140, 106700. [37] COOPER L J, WEBB A S, GILLOOLY A, et al. Design and performance of multicore fiber optimized towards communications and sensing applications[C]//Proc. SPIE 9359. San Francisco:Optical Components and Materials XII, 2015, 93590H. [38] WESTBROOK P S, FEDER K S, KREMP T, et al. Integrated optical fiber shape sensor modules based on twisted multicore fiber grating arrays[C]//Proc. SPIE 8938. San Francisco:Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIV, 2014, 89380H. [39] TONGUE A, BRAUN J. Dynamic fiber optic shape sensing:United States, US 10, 663, 290 B1[P], 16/296, 489. [40] ASKINS C G. Method and apparatus for measuring fiber twist by polarization tracking:United States, US 8, 452, 135, B2[P], 13/552, 948. [41] FROGGATT M E, KLEIN J W, GIFFORD D K, et al. Optical position and/or shape sensing:United States, US 8, 773, 650 B2[P], 12/874, 901. [42] FLORIS I, MADRIGAL J, SALES S, et al. Twisting compensation of optical multicore fiber shape sensors for flexible medical instruments[C]//Proc. SPIE 11233. San Francisco:Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XX, 2020, 1123316. [43] XU R, YURKEWICH A, PATEL R V. Shape sensing for torsionally compliant concentric-tube robots[C]//San Francisco:Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI, 2016, 97020V. [44] LALLY E M, REAVEES M, HORRELL E, et al. Fiber optic shape sensing for monitoring of flexible structures[C]//Proc. SPIE 8345. San Diego:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2012, 83452Y. [45] WESTBROOK P S, KREMP T, FEDER K S, et al. Multicore optical fiber grating arrays for sensing applications[C]//Dusseldorf:42nd European Conference on Optical Communication. 2016, IEEE, 1-3. [46] ZHAN X, LIU Y, TANG M, et al. Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination[J]. Optics Express, 2018, 26(12):15332-15342. [47] JUNIOR L, FRIZERA A, MARQUES C, et al. Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature[J]. Applied Optics, 2018, 57(7):1717-1723. [48] ZHAO Y, WANG C, YIN G, et al. Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating[J]. Applied Optics, 2018, 57(7):1671-1678. [49] NEWKIRK A V, LOPEZ E A, DELGADO G S, et al. Multicore fiber sensors for simultaneous measurement of force and temperature[J]. IEEE Photonics Technology Letters, 2015, 27(14):1523-1526. [50] MIT Technology Review. Robot-assisted high-precision surgery has passed its first test in humans[EB/OL].[2020-02-11]. https://www.technologyreview.com/2020/02/11/844866/robot-assisted-high-precision-surgery-has-passed-its-first-test-in-humans. [51] RobotUnion. High-precision surgery robots:more than an assistant for surgeons[EB/OL].[2020-02-10]. https://robotunion.eu/high-precision-surgery-robots-more-than-an-assistant-for-surgeons. [52] Medgadget, Inc. Microsure MUSA Robot Used for First Time on Real Patients[EB/OL].[2020-02-12]. https://www.medgadget.com/2020/02/microsure-musa-robot-used-for-first-time-on-real-patients.html. [53] VAN MULKEN T J M, SCHOLS R M, SCHARMGA A M J, et al. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema:a randomized pilot trial[J]. Nature Communication, 2020, 11:757. [54] 付宜利, 潘博. 微创外科手术机器人技术研究进展[J]. 哈尔滨工业大学学报, 2019, 51(1):1-15. FU Yili, PAN Bo. Research progress of surgical robot for minimally invasive surgery[J]. Journal of Harbin Institute of Technology, 2019, 51(1):1-15. [55] 卢存存, 刘荣, 姚亮, 等. 机器人手术的临床应用分析[J]. 中华腔镜外科杂志, 2018, 11(4):203-207. LU Cuncun, LIU Rong, YAO Liang, et al. Clinical application and development of robotic surgery[J]. Chinese Journal of Laparoscopic Surgery, 2018, 11(4):203-207. [56] WANG H, TOTARO M, BECCAI L. Toward perceptive soft robots:Progress and challenges[J]. Advanced Science, 2018, 5:1800541. [57] KIM C, LEE C H. Development of a 6-DoF FBG force-moment sensor for a haptic interface with minimally invasive robotic surgery[J]. Journal of Mechanical Science and Technology, 2016, 30(8):3705-3712. [58] NOH Y, BIMBO J, SAREH S, et al. Multi-axis force/torque sensor based on simply-supported beam and optoelectronics[J]. Sensors, 2016, 16(11):1936. [59] NOH Y, SAREH S, WURDEMANN H, et al. Three-axis fiber-optic body force sensor for flexible manipulators[J]. IEEE Sensors Journal, 2016, 16(6):1641-1651. [60] SU H, IORDACHITA I I, TOKUDA J. Fiber-Optic force sensors for MRI-Guided Interventions and Rehabilitation:A Review[J]. IEEE Sensors Journal, 2017, 17(7):1953-1962. [61] NOH Y, LIU Hongbin, SAREH Sina, et al. Image-based optical miniaturized three-axis force sensor for cardiac catheterization[J]. IEEE Sensors Journal, 2016, 16(22):7924-7932. [62] WU Y, LIU Y, ZHOU Y, et al. A skin-inspired tactile sensor for smart prosthetics[J]. Science Robotics, 2018, eaat0429:1-8. [63] YANG T, XIE D, LI Z, et al. Recent advances in wearable tactile sensors:Materials, sensing mechanisms, and device performance[J]. Materials Science and Engineering R, 2017, 115:1-37. [64] MO Z, XU W, BRODERICK N G R. Capability characterization via Ex-vivo experiments of a fiber optical tip force sensing needle for tissue identification[J]. IEEE Sensors Journal, 2018, 18(3):1195-1202. [65] TOTARO M, MONDINI A, BELLACICCA A, et al. Integrated simultaneous detection of tactile and bending cues for soft robotics[J]. Soft Robotics, 2017, 4(4):400-410. [66] RADU C, FISHER P, MITREA D, et al. Integration of real-time image fusion in the robotic-assisted treatment of hepatocellular Carcinoma[J]. Biology, 2020, 9:397. [67] KOCHANSKI R B, LOMBARDI J M, LARATTA J L, et al. Image-guided navigation and robotics in spine surgery[J]. Neurosurgery, 2019, 84(6):1179-1189. [68] YOSHII Y, TOTOKI Y, SASHIDA S, et al. Utility of an image fusion system for 3D preoperative planning and fluoroscopy in the osteosynthesis of distal radius fractures[J]. Journal of Orthopaedic Surgery and Research, 2019, 14:342. [69] NITSCH J, KLEIN J, DAMMANN P, et al. Automatic and efficient MRI-US segmentations for improving intraoperative image fusion in image-guided neurosurgery[J]. NeuroImage:Clinical, 2019, 22:101766. [70] ZHU Jiaqi, LYU Liangxiong, XU Yi, et al. Intelligent soft surgical robots for next-generation minimally invasive surgery[J]. Advanced Intelligent Systems, 2021, 3(5):2100011. [71] FUJIE M G, ZHANG Bo. State-of-the-art of intelligent minimally invasive surgical robots[J]. Frontiers of Medicine, 2020, 14(4):404-416. [72] TAJDARI F, TOULKANI N E, ZHILAKZADEH N. Intelligent optimal feed-back torque control of a 6DOF surgical rotary robot[C]//Tehran:11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2020, IEEE, 1-6. [73] LOFTUS T J, FILIBERTO A C, BALCH J, et al. Intelligent, autonomous machines in surgery[J]. Journal of Surgical Research, 2020, 253:92-99. [74] SUNG M Y, KANG B, KIM J, et al. Intelligent haptic virtual simulation for suture surgery[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(2):54-59. [75] CHENG G, EHRLICH S K, LEBEDEV M, et al. Neuroengineering challenges of fusing robotics and neuroscience[J]. Science Robotics, 2020, 5(49):adb1911. [76] PARK H L, LEE Y, KIM N, et al. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics[J]. Advanced Materials, 2019, 32(15):1903558. |