机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 451-469.doi: 10.3901/JME.2023.20.451
张赫1, 范志斌1, 李海铭1, 白明1,2, 刘孟尧1, 杨嘉辉1, 赵杰1
收稿日期:
2023-04-11
修回日期:
2023-07-28
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
赵杰(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要研究方向为极端环境作业机器人关键技术、航天地面仿真与测试技术、仿生机器人关键技术、医疗及康复机器人关键技术与应用及多传感器系统集成及控制技术。E-mail:jzhao@hit.edu.cn
作者简介:
张赫,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为医疗机器人、仿生水陆两栖机器人。E-mail:zhanghe0451@hit.edu.cn;范志斌,男,2000年出生,硕士研究生。主要研究方向为人机交互、共享控制、医疗机器人。E-mail:21S008059@stu.hit.edu.cn;白明,男,1989年出生,博士研究生。主要研究方向为手术机器人技术,运动学标定,双臂协作技术。E-mail:bm673258549@163.com
基金资助:
ZHANG He1, FAN Zhibin1, LI Haiming1, BAI Ming1,2, LIU Mengyao1, YANG Jiahui1, ZHAO Jie1
Received:
2023-04-11
Revised:
2023-07-28
Online:
2023-10-20
Published:
2023-12-08
摘要: 由于眼组织精细、脆弱,眼球体积较小等原因,传统玻璃体视网膜手术难度大、风险高。机器人技术的引入,克服了传统手术稳定性差、精度低的弊病,提升手术安全性与可靠性。根据操作方式不同,从机器人构型、操作方式等方面分类介绍玻璃体视网膜显微手术机器人的研究进展。分析典型玻璃体视网膜疾病的手术流程,提出玻璃体视网膜机器人设计的基本要求,总结其共性技术。根据玻璃体视网膜手术机器人向智能化、自主化、精准化发展的趋势,对眼组织生物力学建模、术中多模态信息融合辅助技术、显微影像与OCT引导技术、多臂协作控制技术与共享控制技术等玻璃体视网膜手术机器人的研究热点进行介绍,并分析其未来发展趋势。
中图分类号:
张赫, 范志斌, 李海铭, 白明, 刘孟尧, 杨嘉辉, 赵杰. 玻璃体视网膜显微手术机器人研究进展及前沿热点[J]. 机械工程学报, 2023, 59(20): 451-469.
ZHANG He, FAN Zhibin, LI Haiming, BAI Ming, LIU Mengyao, YANG Jiahui, ZHAO Jie. Research Progress and Forward Hotspots of Vitreo-retinal Microsurgical Robot[J]. Journal of Mechanical Engineering, 2023, 59(20): 451-469.
[1] PEYMAN G A. Vitreoretinal surgical techniques[M]. London:Routledge,2019. [2] GREEN W R,CHAN C C,HUTCHINS G M,et al. Central retinal vein occlusion:A prospective histopathologic study of 29 eyes in 28 cases.[J]. Transactions of the American Ophthalmological Society,1981,79:371-422. [3] WEISS J N,BYNOE L A. Injection of tissue plasminogen activator into a branch retinal vein in eyes with central retinal vein occlusion11Dr. weiss has applied for patent rights on this technology and has financial interests (P,I) in micron ophthalmic,inc.[J]. Ophthalmology,2001,108(12):2249-2257. [4] WILKINS J R,PULIAFITO C A,HEE M R,et al. Characterization of epiretinal membranes using optical coherence tomography[J]. Ophthalmology,1996,103(12):2142-2151. [5] LANFRANCO A R,CASTELLANOS A E,DESAI J P,et al. Robotic surgery:a current perspective[J]. Annals of Surgery,2004,239(1):14-21. [6] MOLAEI A,ABEDLOO E,DE SMET M D,et al. Toward the art of robotic-assisted vitreoretinal surgery[J]. Journal of Ophthalmic & Vision Research,2017,12(2):212-218. [7] TAYLOR R,JENSEN P,WHITCOMB L,et al. A steady-hand robotic system for microsurgical augmentation[J]. The International Journal of Robotics Research,1999,18(12):1201-1210. [8] MITCHELL B,KOO J,IORDACHITA I,et al. Development and application of a new steady-hand manipulator for retinal surgery[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. 2007:623-629. [9] ÜNERI A,BALICKI M A,HANDA J,et al. New steady-hand eye robot with micro-force sensing for vitreoretinal surgery[C]//2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. 2010:814-819. [10] BALICKI M,UNERI A,IORDACHITA I,et al. Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery[C]//Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. Berlin,Heidelberg:Springer,2010:303-310. [11] GONENC B,HANDA J,GEHLBACH P,et al. A comparative study for robot assisted vitreoretinal surgery:micron vs. the steady-hand robot[C]//2013 IEEE International Conference on Robotics and Automation,Karlsruhe,Germany. IEEE,2013:4832-4837. [12] ROTH R,WU J,ALAMDAR A,et al. Towards a clinically optimized tilt mechanism for bilateral micromanipulation with steady-hand eye robot[C]//2021 International Symposium on Medical Robotics (ISMR). 2021:1-7. [13] XIAO B,ALAMDAR A,SONG K,et al. Delta robot kinematic calibration for precise robot-assisted retinal surgery[C]//2022 International Symposium on Medical Robotics (ISMR). 2022:1-7. [14] GONENC B,TRAN N,GEHLBACH P,et al. Robot-assisted retinal vein cannulation with force-based puncture detection:Micron vs. the steady-hand eye robot[C]//2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016:5107-5111. [15] EBRAHIMI A,PATEL N,HE C,et al. Adaptive control of sclera force and insertion depth for safe robot-assisted retinal surgery[C]//2019 International Conference on Robotics and Automation (ICRA). 2019:9073-9079. [16] GIJBELS A,WOUTERS N,STALMANS P,et al. Design and realisation of a novel robotic manipulator for retinal surgery[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013:3598-3603. [17] MABLEKOS-ALEXIOU A,OURSELIN S,DA CRUZ L,et al. Requirements based design and end-to-end dynamic modeling of a robotic tool for vitreoretinal surgery[C]//2018 IEEE International Conference on Robotics and Automation (ICRA),Brisbane,QLD. IEEE,2018:135-141. [18] GUERROUAD A,VIDAL P. SMOS:stereotaxical microtelemanipulator for ocular surgery[C]//Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society,1989:879-880. [19] JENSEN P S,GRACE K W,ATTARIWALA R,et al. Toward robot-assisted vascular microsurgery in the retina[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology,1997,235(11):696-701. [20] CHARLES S,DAS H,OHM T,et al. Dexterity-enhanced telerobotic microsurgery[C]//1997 8th International Conference on Advanced Robotics. Proceedings. ICAR’97. 1997:5-10. [21] YU D Y,CRINGLE S,CONSTABLE I. Robotic ocular ultramicrosurgery[J]. Australian and New Zealand Journal of Ophthalmology,1998,26:S6-S8. [22] WEI W,GOLDMAN R,SIMAAN N,et al. Design and theoretical evaluation of micro-surgical manipulators for orbital manipulation and intraocular dexterity[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. 2007:3389-3395. [23] WEI W,GOLDMAN R E,FINE H F,et al. Performance evaluation for multi-arm manipulation of hollow suspended organs[J]. IEEE Transactions on Robotics,2009,25(1):147-157. [24] UETA T,YAMAGUCHI Y,SHIRAKAWA Y,et al. Robot-assisted vitreoretinal surgery[J]. Ophthalmology,2009,116(8):1538-1543.e2. [25] IDA Y,SUGITA N,UETA T,et al. Microsurgical robotic system for vitreoretinal surgery[J]. International Journal of Computer Assisted Radiology and Surgery,2012,7(1):27-34. [26] UETA T,NAKANO T,IDA Y,et al. Comparison of robot-assisted and manual retinal vessel microcannulation in an animal model[J]. British Journal of Ophthalmology,2011,95(5):731-734. [27] NAKANO T,SUGITA N,UETA T,et al. A parallel robot to assist vitreoretinal surgery[J]. International Journal of Computer Assisted Radiology and Surgery,2009,4(6):517-526. [28] MEENINK H (Thijs). Vitreo-retinal eye surgery robot:sustainable precision[D]. Eindhoven:Technische Universiteit Eindhoven,2011. [29] HENDRIX R (Ron). Robotically assisted eye surgery:a haptic master console[D]. Eindhoven:Technische Universiteit Eindhoven,2011. [30] EDWARDS T L,XUE K,MEENINK H C M,et al. First-in-human study of the safety and viability of intraocular robotic surgery[J]. Nature Biomedical Engineering,2018,2(9):649-656. [31] RAHIMY E,WILSON J,TSAO T C,et al. Robot-assisted intraocular surgery:Development of the IRISS and feasibility studies in an animal model[J]. Eye,2013,27(8):972-978. [32] WILSON J T,GERBER M J,PRINCE S W,et al. Intraocular robotic interventional surgical system (IRISS):Mechanical design,evaluation,and master-slave manipulation:intraocular robotic interventional surgical system (IRISS)[J]. The International Journal of Medical Robotics and Computer Assisted Surgery,2018,14(1):e1842. [33] GIJBELS A,VANDER POORTEN E B,GORISSEN B,et al. Experimental validation of a robotic comanipulation and telemanipulation system for retinal surgery[C]//5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. 2014:144-150. [34] GIJBELS A,VANDER POORTEN E B,STALMANS P,et al. Design of a teleoperated robotic system for retinal surgery[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). 2014:2357-2363. [35] GIJBELS A,WILLEKENS K,ESTEVENY L,et al. Towards a clinically applicable robotic assistance system for retinal vein cannulation[C]//2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). 2016:284-291. [36] GIJBELS A,SMITS J,SCHOEVAERDTS L,et al. In-human robot-assisted retinal vein cannulation,a world first[J]. Annals of Biomedical Engineering,2018,46(10):1676-1685. [37] NASSERI M A,EDER M,NAIR S,et al. The introduction of a new robot for assistance in ophthalmic surgery[C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),Osaka. IEEE,2013:5682-5685. [38] NASSERI M A,EDER M,EBERTS D,et al. Kinematics and dynamics analysis of a hybrid parallel-serial micromanipulator designed for biomedical applications[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2013:293-299. [39] BARTHEL A,TREMATERRA D,NASSERI M A,et al. Haptic interface for robot-assisted ophthalmic surgery[C]//2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,2015:4906-4909. [40] ZHOU M,YU Q,HUANG K,et al. Towards robotic-assisted subretinal injection:A hybrid parallel–serial robot system design and preliminary evaluation[J]. IEEE Transactions on Industrial Electronics,2020,67(8):6617-6628. [41] XIAO Jingjing,HUANG Long,SHEN Lijun,et al. Design and research of a robotic aided system for retinal vascular bypass surgery[J]. Journal of Medical Devices,2014,8(4):044501. [42] CHEN Y Q,TAO J W,LI L,et al. Feasibility study on robot-assisted retinal vascular bypass surgery in an ex vivo porcine model[J]. Acta Ophthalmologica,2017,95(6):e462-e467. [43] BAI M,ZHANG M,ZHANG H,et al. An error compensation method for surgical robot based on RCM mechanism[J]. IEEE Access,2021,9:140747-140758. [44] ZHANG H,WANG C,BAI M,et al. A Micro-3-degree-of-freedom force sensor for intraocular dexterous surgical robots[J]. Advanced Intelligent Systems,2023,5(7):2200413. [45] BOURCIER T,CHAMMAS J,BECMEUR P H,et al. Robotically assisted pterygium surgery:First human case[J]. Cornea,2015,34(10):1329-1330. [46] BOURGES J L,HUBSCHMAN J P,WILSON J,et al. Assessment of a hexapod surgical system for robotic micro-macro manipulations in ocular surgery[J]. Ophthalmic Research,2011,46(1):25-30. [47] SUZUKI H,WOOD R J. Origami-inspired miniature manipulator for teleoperated microsurgery[J]. Nature Machine Intelligence,2020,2(8):437-446. [48] NWAFOR C J,LAURENT G J,ROUGEOT P,et al. The caturo:A submillimeter diameter glass concentric tube robot with high curvature[J]. Advanced Intelligent Systems,2022(1):2200308. [49] ANG W T,RIVIERE C N,KHOSLA P K. An active hand-held instrument for enhanced microsurgical accuracy[C]//DELP S L,DIGOIA A M,JARAMAZ B. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000. Berlin,Heidelberg:Springer,2000:878-886. [50] MACLACHLAN R A,BECKER B C,TABARES J C,et al. Micron:An actively stabilized handheld tool for microsurgery[J]. IEEE Transactions on Robotics,2012,28(1):195-212. [51] BECKER B C,MACLACHLAN R A,LOBES L A,et al. Vision-based retinal membrane peeling with a handheld robot[C]//2012 IEEE International Conference on Robotics and Automation,St Paul,MN,USA. IEEE,2012:1075-1080. [52] BECKER B C,YANG S,MACLACHLAN R A,et al. Towards vision-based control of a handheld micromanipulator for retinal cannulation in an eyeball phantom[C]//2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). 2012:44-49. [53] LATT W T,TAN U X,SHEE C Y,et al. A compact hand-held active physiological tremor compensation instrument[C]//2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE,2009:711-716. [54] SAXENA A,PATEL R V. An active handheld device for compensation of physiological tremor using an ionic polymer metallic composite actuator[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013:4275-4280. [55] CHANG D,GU G M,KIM J. Design of a novel tremor suppression device using a linear delta manipulator for micromanipulation[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013:413-418. [56] PAYNE C J,KWOK K W,YANG G Z. An ungrounded hand-held surgical device incorporating active constraints with force-feedback[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013:2559-2565. [57] GONENC B,FELDMAN E,GEHLBACH P,et al. Towards robot-assisted vitreoretinal surgery:Force- sensing micro-forceps integrated with a handheld micromanipulator[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). 2014:1399-1404. [58] GONENC B,GEHLBACH P,HANDA J,et al. Motorized force-sensing micro-forceps with tremor cancelling and controlled micro-vibrations for easier membrane peeling[C]//5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. 2014:244-251. [59] GONENC B,CHAMANI A,HANDA J,et al. 3-DOF force-sensing motorized micro-forceps for robot-assisted vitreoretinal surgery[J]. IEEE Sensors Journal,2017,17(11):3526-3541. [60] KANG J,CHEON G. Demonstration of subretinal injection using common-path swept source OCT guided microinjector[J]. Applied Sciences,2018,8(8):1287. [61] WANG Z,WANG S,ZUO S. A hand‐held device with 3‐DOF haptic feedback mechanism for microsurgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery,2019,15(5)e2025. [62] ZHANG T,GONG L,WANG S,et al. Hand-held instrument with integrated parallel mechanism for active tremor compensation during microsurgery[J]. Annals of Biomedical Engineering,2020,48(1):413-425. [63] 邬如靖,韩少峰,广晨汉,等. 具有微力感知的眼科手术器械的设计与实现[J]. 机械工程学报,2020,56(17):12-19. WU Rujing,HAN Shaofeng,GUANG Chenhan,et al. Design and implementation of a micro-force sensing instrument for ophthalmic surgery[J]. Journal of Mechanical Engineering,2020,56(17):12-19. [64] KIM E,CHOI I,YANG S. Design and control of fully handheld microsurgical robot for active tremor cancellation[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). 2021:12289-12295. [65] CHARLES M W,BROWN N. Dimensions of the human eye relevant to radiation protection (dosimetry)[J]. Physics in Medicine and Biology,1975,20(2):202-218. [66] LOCKE R C O,PATEL R V. Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation,Rome,Italy. IEEE,2007:1900-1905. [67] ZONG G,PEI X,YU J,et al. Classification and type synthesis of 1-DOF remote center of motion mechanisms[J]. Mechanism and Machine Theory,2008,43(12):1585-1595. [68] AKSUNGUR S. Remote center of motion (RCM) mechanisms for surgical operations[J]. International Journal of Applied Mathematics,Electronics and Computers,2015,3(2):119. [69] 付宜利,潘博. 微创外科手术机器人技术研究进展[J]. 哈尔滨工业大学学报,2019,51(1):1. FU Yili,PAN Bo. Research progress of surgical robot for minimally invasive surgery[J]. Journal of Harbin Institute of Technology,2019,51(1):1. [70] 贺昌岩,杨洋,梁庆丰,等. 机器人在眼科手术中的应用及研究进展[J]. 机器人,2019,41(2):265-275. HE Changyan,YANG Yang,LIANG Qingfeng,et al. Applications and research progress of robot assisted eye surgery[J]. Robot,2019,41(2):265-275. [71] SINGH S P N,RIVIERE C N. Physiological tremor amplitude during retinal microsurgery[C]//Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference (IEEE Cat. No.02 CH37342). 2002:171-172. [72] DEUSCHL G,RAETHJEN J,LINDEMANN M,et al. The pathophysiology of tremor[J]. Muscle & Nerve,2001,24(6):716-735. [73] ZHANG J,CHU F. Real-time modeling and prediction of physiological hand tremor[C]//Proceedings. (ICASSP ’05). IEEE International Conference on Acoustics,Speech,and Signal Processing,2005. IEEE,2005:645-648. [74] RIVIERE C N,THAKOR N V. Modeling and canceling tremor in human-machine interfaces[J]. IEEE Engineering in Medicine and Biology Magazine,1996,15(3):29-36. [75] VELUVOLU K C,TAN U X,LATT W T,et al. Bandlimited multiple fourier linear combiner for real-time tremor compensation[C]//2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Lyon,France. IEEE,2007:2847-2850. [76] VELUVOLU K C,ANG W T. Estimation of physiological tremor from accelerometers for real-time applications[J]. Sensors,2011,11(3):3020-3036. [77] ANG W T,KHOSLA P K,RIVIERE C N. Kalman filtering for real-time orientation tracking of handheld microsurgical instrument[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),IEEE,2004:2574-2580. [78] BECKER B C,MACLACHLAN R A,RIVIERE C N. State estimation and feedforward tremor suppression for a handheld micromanipulator with a kalman filter[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,2011:5160-5165. [79] ZHOU Y,JENKINS M E,NAISH M D,et al. Characterization of parkinsonian hand tremor and validation of a high-order tremor estimator[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2018,26(9):1823-1834. [80] GUO S,SHEN R,XIAO N,et al. Study on physiological tremor recognition algorithm in the vascular interventional surgical robot[C]//2018 IEEE International Conference on Mechatronics and Automation (ICMA),Changchun. IEEE,2018:597-602. [81] 肖晶晶,杨洋,李大寨,等. 眼科显微手术机器人研究进展及关键技术分析[J]. 机械工程学报,2013,49(1):15-22. XIAO Jingjing,YANG Yang,LI Dazhai,et al. Advances and key techniques of ophthalmic microsurgical robots[J]. Journal of Mechanical Engineering,2013,49(1):15-22. [82] CARTER J B,MICHELS R G,GLASER B M,et al. Iatrogenic retinal breaks complicating pars plana vitrectomy[J]. Ophthalmology,1990,97(7):848-854. [83] ERGENEMAN O,POKKI J,POČEPCOVÁ V,et al. Characterization of puncture forces for retinal vein cannulation[J]. Journal of Medical Devices,2011,5(4):044504. [84] BERKELMAN P J,WHITCOMB L L,TAYLOR R H,et al. A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation[J]. IEEE Transactions on Robotics and Automation,2003,19(5):917-921. [85] IORDACHITA I,SUN Z,BALICKI M,et al. A sub-millimetric,0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery[J]. International Journal of Computer Assisted Radiology and Surgery,2009,4(4):383-390. [86] ZHANG H,YI H,FAN Z,et al. An FBG-based 3-DOF force sensor with simplified structure for retinal microsurgery[J]. IEEE Sensors Journal,2022,22(15):14911-14920. [87] CHARLES S. Techniques and tools for dissection of epiretinal membranes[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology,2003,241(5):347-352. [88] DOGRAMACI M,WILLIAMSON T H. Dynamics of epiretinal membrane removal off the retinal surface:a computer simulation project[J]. British Journal of Ophthalmology,2013,97(9):1202-1207. [89] HAN S,HE C,MA K,et al. A study for lens capsule tearing during capsulotomy by finite element simulation[J]. Computer Methods and Programs in Biomedicine,2021,203:106025. [90] 轩新想,杨洋,王哲,等. 缝针刺入角膜组织的力学模型[J]. 高技术通讯,2009,19(9):951-956. XUAN Xinxiang,YANG Yang,WANG Zhe,et al. A mechanical model of needle penetration into corneal tissue[J]. High Technology Letters,2009,19(9):951-956. [91] SU P,DENG S,HUANG L,et al. Analysis and evaluation of a robotic trephination in penetrating keratoplasty[J]. Journal of Medical Devices,2016,10(2):024503. [92] YIGITSOY M,BELAGIANNIS V,DJURKA A,et al. Random ferns for multiple target tracking in microscopic retina image sequences[C]//2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). 2015:209-212. [93] PROBST T,MANINIS K K,CHHATKULI A,et al. Automatic tool landmark detection for stereo vision in robot-assisted retinal surgery[J]. IEEE Robotics and Automation Letters,2018,3(1):612-619. [94] SMITS J,OURAK M,GIJBELS A,et al. Development and experimental validation of a combined FBG force and OCT distance sensing needle for robot-assisted retinal vein cannulation[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). 2018:129-134. [95] ZHOU M,HUANG K,ESLAMI A,et al. Precision needle tip localization using optical coherence tomography images for subretinal injection[C]//2018 IEEE International Conference on Robotics and Automation (ICRA),Brisbane,QLD. IEEE,2018:4033-4040. [96] GONENC B,TRAN N,RIVIERE C N,et al. Force-based puncture detection and active position holding for assisted retinal vein cannulation[C]//2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). 2015:322-327. [97] HE C,PATEL N,SHAHBAZI M,et al. Toward safe retinal microsurgery:Development and evaluation of an RNN-based active interventional control framework[J]. IEEE Transactions on Biomedical Engineering,2020,67(4):966-977. [98] DEWAN M,MARAYONG P,OKAMURA A M,et al. Vision-based assistance for ophthalmic micro-surgery[C]//Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. Berlin,Heidelberg:Springer,2004:49-57. [99] RICHA R,BALICKI M,SZNITMAN R,et al. Vision-based proximity detection in retinal surgery[J]. IEEE Transactions on Biomedical Engineering,2012,59(8):2291-2301. [100] PROBST T,MANINIS K K,CHHATKULI A,et al. Automatic tool landmark detection for stereo vision in robot-assisted retinal surgery[J]. IEEE Robotics and Automation Letters,2018,3(1):612-619. [101] YANG S,MARTEL J N,LOBES L A,et al. Techniques for robot-aided intraocular surgery using monocular vision[J]. The International Journal of Robotics Research,2018,37(8):931-952. [102] ZHOU M,WU J,EBRAHIMI A,et al. Spotlight-based 3D instrument guidance for retinal surgery[C]//2020 International Symposium on Medical Robotics (ISMR). 2020:69-75. [103] ZHOU M,WU J,EBRAHIMI A,et al. Spotlight-based 3D instrument guidance for autonomous task in robot-assisted retinal surgery[J]. IEEE Robotics and Automation Letters,2021,6(4):7750-7757. [104] ZHOU M,HENNERKES F,LIU J,et al. Theoretical error analysis of spotlight-based instrument localization for retinal surgery[J]. Robotica,2023(1):1-14. [105] KIM J W,ZHANG P,GEHLBACH P,et al. Towards autonomous eye surgery by combining deep imitation learning with optimal control[C]//Proceedings of the 2020 Conference on Robot Learning. PMLR,2021:2347-2358. [106] EBRAHIMI A,SEFATI S,GEHLBACH P,et al. Simultaneous online registration-independent stiffness identification and tip localization of surgical instruments in robot-assisted eye surgery[J]. IEEE Transactions on Robotics,2022:1-15. [107] TAYAMA T,KUROSE Y,MARINHO M M,et al. Autonomous positioning of eye surgical robot using the tool shadow and Kalman filtering[C]//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018:1723-1726. [108] KOYAMA Y,MARINHO M M,MITSUISHI M,et al. Autonomous coordinated control of the light guide for positioning in vitreoretinal surgery[J]. IEEE Transactions on Medical Robotics and Bionics,2022,4(1):156-171. [109] WEISS J,RIEKE N,NASSERI M A,et al. Fast 5DOF needle tracking in iOCT[J]. International Journal of Computer Assisted Radiology and Surgery,2018,13(6):787-796. [110] GERBER M J,HUBSCHMAN J P,TSAO T C. Automated retinal vein cannulation on silicone phantoms using optical-coherence-tomography-guided robotic manipulations[J]. IEEE/ASME Transactions on Mechatronics,2021,26(5):2758-2769. [111] SONG C,GEHLBACH P L,KANG J U. Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography[J]. Optics Express,2012,20(21):23414. [112] CHEON G W,HUANG Y,CHA J,et al. Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools[J]. Biomedical Optics Express,2015,6(5):1942. [113] SONG C,PARK D Y,GEHLBACH P L,et al. Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery[J]. Biomedical Optics Express,2013,4(7):1045. [114] OURAK M,SMITS J,ESTEVENY L,et al. Combined OCT distance and FBG force sensing cannulation needle for retinal vein cannulation:in vivo animal validation[J]. International Journal of Computer Assisted Radiology and Surgery,2019,14(2):301-309. [115] 甘亚辉,戴先中. 多机械臂协调控制研究综述[J]. 控制与决策,2013,28(3):321-333. GAN Yahui,DAI Xianzhong. Survey of coordinated multiple manipulators control[J]. Control and Decision Making,2013,28(3):321-333. [116] SMITH C,KARAYIANNIDIS Y,NALPANTIDIS L,et al. Dual arm manipulation—A survey[J]. Robotics and Autonomous Systems,2012,60(10):1340-1353. [117] HE C,YANG E,PATEL N,et al. Automatic light pipe actuating system for bimanual robot-assisted retinal surgery[J]. IEEE/ASME Transactions on Mechatronics,2020,25(6):2846-2857. [118] HAYATI S,TSO K,LEE T. Dual arm coordination and control[J]. Robotics and Autonomous Systems,1989,5(4):333-344. [119] NAKANO E. Cooperational control of the anthropomorphous manipulator MELARM’[C]//Proc. of 4th Int. Symp. Industrial Robots. 1974:251-260. [120] KAZEROONI H,TSAY T I. Compliance control and unstructured modeling of cooperating robots[C]//1988 IEEE International Conference on Robotics and Automation Proceedings. 1988:510-515. [121] WU Q,LI M,QI X,et al. Coordinated control of a dual-arm robot for surgical instrument sorting tasks[J]. Robotics and Autonomous Systems,2019,112:1-12. [122] SONG J,GONENC B,GUO J,et al. Intraocular snake integrated with the steady-hand eye robot for assisted retinal microsurgery[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). 2017:6724-6729. [123] FLEMING I,BALICKI M,KOO J,et al. Cooperative robot assistant for retinal microsurgery[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008:11th International Conference,September 6-10,2008,New York,USA. Berlin,Heidelberg:Springer,2008:543-550. [124] LI G,LI Q,YANG C,et al. The classification and new trends of shared control strategies in telerobotic systems:A survey[J]. IEEE Transactions on Haptics,2023,16(2):118-133. [125] CHNG C B,HO Y,CHUI C K. Automation of retinal surgery:A shared control robotic system for laser ablation[C]//2015 IEEE International Conference on Information and Automation,Lijiang,China. IEEE,2015:1957-1962. [126] GONENC B,TRAN N,RIVIERE C N,et al. Force-based puncture detection and active position holding for assisted retinal vein cannulation[C]//2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). 2015:322-327. [127] BALACHANDRAN R,MISHRA H,CAPPELLI M,et al. Adaptive authority allocation in shared control of robots using Bayesian filters[C]//2020 IEEE International Conference on Robotics and Automation (ICRA),Paris,France. IEEE,2020:11298-11304. [128] XI B,WANG S,YE X,et al. A robotic shared control teleoperation method based on learning from demonstrations[J]. International Journal of Advanced Robotic Systems,2019,16(4):1729881419857428. |
[1] | 宗俊杰, 杨洋, 王朝董, 郑昱, 林闯, 杨斯钦, 广晨汉. 面向眼内手术的主操作器设计与零力控制方法研究[J]. 机械工程学报, 2024, 60(17): 63-71. |
[2] | 吴其林, 赵韩, 陈晓飞, 赵雅婷. 多臂协作机器人技术与应用现状及发展趋势[J]. 机械工程学报, 2023, 59(15): 1-16. |
[3] | 杨俊儒, 褚端峰, 陆丽萍, 王金湘, 吴超仲, 殷国栋. 智能汽车人机共享控制研究综述[J]. 机械工程学报, 2022, 58(18): 31-55. |
[4] | 谢有浩, 魏振亚, 赵林峰, 王家恩, 陈无畏. 基于μ综合方法的智能车辆人机共驾的鲁棒横向控制[J]. 机械工程学报, 2020, 56(4): 104-114. |
[5] | 季旭全, 王君臣, 赵江地, 张晓会, 孙振. 基于机器人与视觉引导的星载设备智能装配方法[J]. 机械工程学报, 2018, 54(23): 63-72. |
[6] | 谈东奎, 陈无畏, 王家恩, 汪洪波, 黄鹤. 基于人机共享和分层控制的车道偏离辅助系统[J]. 机械工程学报, 2015, 51(22): 98-110. |
[7] | 肖晶晶;杨洋;李大寨;黄龙;张雷雨. 眼科显微手术机器人研究进展及关键技术分析[J]. , 2013, 49(1): 15-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||