[1] 肖龙, 黄俊, 赵佳伟, 等. 月面熔岩管洞穴探测的意义与初步设想[J]. 中国科学:物理学力学天文学, 2018, 48(11):87-100. XIAO Long, HUANG Jun, ZHAO Weijia, et al. Significance and preliminary assumptions of cave exploration of lava tubes on lunar surface[J]. Chinese Science:Physics Mechanics Astronomy, 2018, 48(11):87-100. [2] HARUYAMA J, HIOKI K, SHIRAO M, et al. Possible lunar lava tube skylight observed by SELENE cameras[J]. Geophysical Research Letters, 2009, 36(21):1-5. [3] ANGELIS D G, WILSON J, CLOWDSLEY M, et al. Lunar lava tube radiation safety analysis[J]. Journal of radiation research, 2002, 43(Suppl.):41-45. [4] HARUYAMA J, MOROTA T, KOBAYASHI S, et al. Lunar holes and lava tubes as resources for lunar science and exploration[M]. Moon Springer, 2012. [5] KRISHNA M, BARES J, MUTSCHLER E. Tethering system design for Dante II[C]//Proceedings of International Conference on Robotics and Automation, April 25-25, 1997, Albuquerque, NM, USA. New York:IEEE, 1997:1100-1105. [6] PIRJANIAN P, LEGER C, MUMM E, et al. Distributed control for a modular, reconfigurable cliff robot[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation, May 11-15, 2002, Washington, DC, USA. New York:IEEE, 2002:4083-4088. [7] NESNAS I A, ABAD-MANTEROLA P, EDLUND J A, et al. Axel mobility platform for steep terrain excursions and sampling on planetary surfaces[C]//2008 IEEE Aerospace Conference, March 01-08, 2008, Big Sky, MT, USA. New York:IEEE, 2008:1-11. [8] NESNAS I D, MATTHEWS J B, ABAD-MANTEROLA P, et al. Axel and DuAxel rovers for the sustainable exploration of extreme terrains[J]. Journal of Field Robotics, 2012, 29(4):663-685. [9] MCGAREY P, NGUYEN T, PAILEVANIAN T, et al. Design and test of an electromechanical rover tether for the exploration of vertical lunar pits[C]//Proceedings of the 2020 IEEE Aerospace Conference, March 07-14, 2020, Big Sky, MT, USA. New York:IEEE, 2020:1-10. [10] NESNAS I A, KERBER L, PARNESS A, et al. Moon diver:A discovery mission concept for understanding the history of secondary crusts through the exploration of a lunar mare pit[C]//2019 IEEE Aerospace Conference, March 02-09, 2019, Big Sky, MT, USA. New York:IEEE, 2019:1-23. [11] STENNING B, BAJIN L, ROBSON C, et al. Towards autonomous mobile robots for the exploration of steep terrain[C]//the 9th International Conference on Field and Service Robotics (FSR), December 9-10, 2013, Brisbane, Australia. New York:Springer, 2015:33-47. [12] MCGAREY P, POMERLEAU F, BARFOOT T D. System design of a tethered robotic explorer (TReX) for 3D mapping of steep terrain and harsh environments[C]//the 10th Conference on Field and Service Robotics (FSR), June 24-26, 2015, Toronto, Canada. New York:Springer, 2016:267-281. [13] AOKI T, MURAYAMA Y, HIROSE S. Development of a transformable three-wheeled lunar rover:Tri-star IV[J]. Journal of Field Robotics, 2014, 31(1):206-223. [14] 范雪兵. 载人月球车悬架与车轮结构设计及性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014. FAN Xuebing. Structural design and performance research of manned lunar rover suspension and wheels[D]. Harbin:Harbin Institute of Technology, 2014. [15] 郑军强. 六轮摇臂式火星车轮-步复合移动系统及蠕动爬行策略研究[D]. 哈尔滨:哈尔滨工业大学, 2019. ZHENG Junqiang. Research on the six-wheel rocker arm type Mars wheel-step compound moving system and creeping crawling strategy[D]. Harbin:Harbin Institute of Technology, 2019. [16] UDAY T I R; AHMAD N; GHOSH A, et al. Design and implementation of the next generation mars rover[C]//Proceedings of the 201821st International Conference of Computer and Information Technology (ICCIT), December 21-23, 2018, Dhaka, Bangladesh. New York:IEEE, 2018, 1-6. [17] 丁亮. 月/星球车轮地作用地面力学模型及其应用研究[D]. 哈尔滨:哈尔滨工业大学, 2009. DING Liang. Wheel-soil interaction terramechanics for lunar/planetary exploration rovers:Modeling and application[D]. Harbin:Harbin Institute of Technology, 2009. [18] BEKKER M G. Introduction to terrain-vehicle systems[M]. Ann Arbor, Michigan, USA:The University of Michigan Press, 1969. [19] JANOSI Z, HANAMOTO B. Analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils[C]//Proceedings of the 1st International Conference of ISTVES, 1961, Torino, Italy. ISTVS, 1961:707-726. [20] REECE A R, WONG J Y. Soil failure beneath rigid wheels[C]//Proceedings of the Second International Conference of ISTVS, August 29-September 2, Quebec, Canada. ISTVS, 1966:425-445. [21] IAGNEMMA K, KANG S, SHIBLY H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics, 2004, 20(5):921-927. [22] NIKSIRAT P, DACA A, SKONIECZNY K. The effects of reduced-gravity on planetary rover mobility[J]. The International Journal of Robotics Research, 2020, 39(7):797-811. [23] WANG Song, ZOU Meng, DANG Zhaolong, et al. Modelling of flexible metal wheels for planetary rover on deformable terrain[J]. Thin-Walled Structures, 2019, 141:97-110. [24] INOTSUME H, MORELAND S, SKONIECZNY K, et al. Parametric study and design guidelines for rigid wheels for planetary rovers[J]. Journal of Terramechanics, 2019, 85:39-57. [25] YANG Jun, DONG Mingming, YE Jiatong. A literature review of the rocker-bogie suspension for the planetary rover[C]//Proceedings of the 2017 International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT 2017), December 2-3, 2017, Bangkok, Thailand. Amsterdam:ATLANTIS Press, 2017, 1951-6851. [26] LI Suojun, GAO Haibo, DENG Zongquan. Mobility performance evaluation of lunar rover and optimization of rocker-bogie suspension parameters[C]//Proceedings of 20082nd International Symposium on Systems and Control in Aerospace and Astronautics, December 10-12, 2008, Shenzhen, China. New York:IEEE, 2008:1-6. [27] AGUIRRE J A, GUTIExRREZ-FRxIAS O, SOSSA-AZUELA H. Optimization of a passive parallelogram suspension system for a planetary rover using differential evolution[J]. IEEE Latin America Transactions, 2021, 19(8), 1366-1374. [28] MALENKOV M I, VOLOV V A. Wheel-walking propulsion unit of a planetary rover with active suspension[J]. Russian Engineering Research, 2017, 37:1033-1040. [29] CORDES F, BABU A, KIRCHNER F. Static force distribution and orientation control for a rover with an actively articulated suspension system[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 24-28, 2017, Vancouver, BC, Canada. New York:IEEE, 2017:5219-5224. [30] ZHENG Junqiang, GAO Haibo, YUAN Baofeng, et al. Design and terramechanics analysis of a Mars rover utilising active suspension[J]. Mechanism and Machine Theory, 2018, 128:125-149. [31] YUAN Baofeng, WANG Chengen, ZOU Meng, et al. experimental study on the durability of China's Mars rover's mobility system[J]. Journal of Aerospace Engineering, 2021, 34(5):1. [32] KINGMA D P, BA J. Adam:A method for stochastic optimization[C]//Proceedings of the 3rd International Conference for Learning Representations, May 7-9, 2015, San Diego, CA, USA. New York:Cornell University Press, 2015:1-15. [33] COELLO C, LAMONT G B, VELDHUIZEN D. Evolutionary algorithms for solving multi-objective problems[M]. New York:Springer US, 2002. [34] DING Liang, HUANG Lan, LI Shu, et al. Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain[J]. IEEE Transactions on Robotics, 2020, 36(3):894-909. |